Abdolkarim Mahrooz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4497184/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Importance of paraoxonase 1 (PON1) as an antioxidant and antiatherogenic enzyme in the cardiovascular complications of type 2 diabetes: Genotypic and phenotypic evaluation. Diabetes Research and Clinical Practice, 2020, 161, 108067.	2.8	44
2	The epigenetic regulation of paraoxonase 1 (PON1) as an important enzyme in HDL function: The missing link between environmental and genetic regulation. Clinical Biochemistry, 2019, 73, 1-10.	1.9	38
3	The combined utility of myeloperoxidase (MPO) and paraoxonase 1 (PON1) as two important HDL-associated enzymes in coronary artery disease: Which has a stronger predictive role?. Atherosclerosis, 2019, 280, 7-13.	0.8	32
4	The complex combination of COVID-19 and diabetes: pleiotropic changes in glucose metabolism. Endocrine, 2021, 72, 317-325.	2.3	29
5	The Role of Metformin Response in Lipid Metabolism in Patients with Recent-Onset Type 2 Diabetes: HbA1c Level as a Criterion for Designating Patients as Responders or Nonresponders to Metformin. PLoS ONE, 2016, 11, e0151543.	2.5	26
6	The role of clinical response to metformin in patients newly diagnosed with type 2 diabetes: a monotherapy study. Clinical and Experimental Medicine, 2015, 15, 159-165.	3.6	25
7	Impact of ATM and SLC22A1 Polymorphisms on Therapeutic Response to Metformin in Iranian Diabetic Patients. International Journal of Molecular and Cellular Medicine, 2016, 5, 1-7.	1.1	25
8	Functional mechanisms ofmiRâ€192 family in cancer. Genes Chromosomes and Cancer, 2020, 59, 722-735.	2.8	22
9	The variant organic cation transporter 2 (OCT2)–T201M contribute to changes in insulin resistance in patients with type 2 diabetes treated with metformin. Diabetes Research and Clinical Practice, 2015, 108, 78-83.	2.8	21
10	Pharmacological Interactions of Paraoxonase 1 (PON1): A HDL-Bound Antiatherogenic Enzyme. Current Clinical Pharmacology, 2016, 11, 259-264.	0.6	21
11	R-carrying genotypes of serum paraoxonase (PON1) 192 polymorphism and higher activity ratio are related to susceptibility against ischemic stroke. Molecular Biology Reports, 2012, 39, 11177-11185.	2.3	18
12	The common variant Q192R at the paraoxonase 1 (PON1) gene and its activity are responsible for a portion of the altered antioxidant status in type 2 diabetes. Experimental Biology and Medicine, 2016, 241, 1489-1496.	2.4	17
13	The Polymorphic Variants rs3088442 and rs2292334 in the Organic Cation Transporter 3 (OCT3) Gene and Susceptibility Against Type 2 Diabetes: Role of their Interaction. Archives of Medical Research, 2017, 48, 162-168.	3.3	16
14	Paraoxonase 1 (PON1)-L55M among common variants in the coding region of the paraoxonase gene family may contribute to the glycemic control in type 2 diabetes. Clinica Chimica Acta, 2018, 484, 40-46.	1.1	15
15	Increased oxidized-LDL levels and arylesterase activity/HDL ratio in ESRD patients treated with hemodialysis. Clinical and Investigative Medicine, 2012, 35, 144.	0.6	15
16	Naringenin is an inhibitor of human serum paraoxonase (PON1): an in vitro study. Journal of Clinical Laboratory Analysis, 2011, 25, 395-401.	2.1	13
17	The salt stimulation property of serum paraoxonase (PON1) could be a valuable factor in evaluating the enzyme status in ischemic stroke: The role of activity-determined PON1 192Q/R phenotypes. Journal of the Neurological Sciences, 2014, 338, 197-202.	0.6	12
18	Epigenetics of paraoxonases. Current Opinion in Lipidology, 2020, 31, 200-205.	2.7	12

#	Article	IF	CITATIONS
19	Epigenetic alterations and genetic variations of angiotensin-converting enzyme 2 (ACE2) as a functional receptor for SARS-CoV-2: potential clinical implications. European Journal of Clinical Microbiology and Infectious Diseases, 2021, 40, 1587-1598.	2.9	10
20	Role of microRNAs in the anticancer effects of the flavonoid luteolin: a systematic review. European Journal of Cancer Prevention, 2021, 30, 413-421.	1.3	9
21	Association between the synonymous variant organic cation transporter 3 (OCT3)-1233G>A and the glycemic response following metformin therapy in patients with type 2 diabetes. Iranian Journal of Basic Medical Sciences, 2017, 20, 250-255.	1.0	9
22	Allele frequency and genotype distribution of a common variant in the 3´-untranslated region of the SLC22A3 gene in patients with type 2 diabetes: Association with response to metformin. Journal of Research in Medical Sciences, 2016, 21, 92.	0.9	9
23	Paraoxonase-2 variants potentially influence insulin resistance, beta-cell function, and their interrelationships with alanine aminotransferase in type 2 diabetes. Journal of Research in Medical Sciences, 2018, 23, 107.	0.9	9
24	Cellular uptake, imaging and pathotoxicological studies of a novel Gd[<scp>iii</scp>]–DO3A-butrol nano-formulation. RSC Advances, 2014, 4, 45984-45994.	3.6	7
25	Cloning and expression of codon-optimized recombinant darbepoetin alfa in Leishmania tarentolae T7-TR. Protein Expression and Purification, 2016, 118, 120-125.	1.3	7
26	Epigallocatechin-3-gallate Enhances the Efficacy of MicroRNA-34a Mimic and MiR-93 Inhibitor Co-transfection in Prostate Cancer Cell Line. Iranian Journal of Allergy, Asthma and Immunology, 2020, 19, 612-623.	0.4	7
27	Association of APO A5 Gene Promoter Region -1131T>C Polymorphism (rs662799) to Plasma Triglyceride Level in Patients with Type 2 Diabetic Nephropathy. Journal of Clinical and Diagnostic Research JCDR, 2016, 10, BC09-13.	0.8	6
28	Improved risk assessment of coronary artery disease by substituting paraoxonase 1 activity for HDL-C: Novel cardiometabolic biomarkers based on HDL functionality. Nutrition, Metabolism and Cardiovascular Diseases, 2021, 31, 1166-1176.	2.6	6
29	Oxidized LDL-regulated microRNAs for evaluating vascular endothelial function: molecular mechanisms and potential biomarker roles in atherosclerosis. Critical Reviews in Clinical Laboratory Sciences, 2022, 59, 40-53.	6.1	5
30	The Rapid and Sensitive Quantitative Determination of Galactose by Combined Enzymatic and Colorimetric Method: Application in Neonatal Screening. Applied Biochemistry and Biotechnology, 2016, 179, 283-293.	2.9	4
31	MicroRNAs may provide new strategies in the treatment and diagnosis of diabetic retinopathy: Importance of VEGF. Iranian Journal of Basic Medical Sciences, 2021, 24, 267-279.	1.0	4
32	Association of rs11558471 in SLC30A8 Gene with Interleukin 17 Serum Levels and Insulin Resistance in Iranian Patients with Type 2 Diabetes. Iranian Journal of Immunology, 2020, 17, 215-225.	0.6	4
33	Genotype and phenotype of salt-stimulated paraoxonase 1 (PON1) is associated with atherogenic indices in type 2 diabetes. Journal of Diabetes and Metabolic Disorders, 2018, 17, 1-10.	1.9	3
34	Enzymatic characterization of a NADH-dependent diaphorase from Lysinibacillus sp. strain PAD-91. Protein Expression and Purification, 2018, 146, 1-7.	1.3	2
35	Nanovehicle-based Small Interfering RNA (siRNA) Delivery for Therapeutic Purposes: A New Molecular Approach in Pharmacogenomics. Current Clinical Pharmacology, 2018, 13, 173-182.	0.6	2
36	Purification and Characterization of Recombinant Darbepoetin Alfa from Leishmania tarentolae. Molecular Biotechnology, 2016, 58, 566-572.	2.4	1

#	Article	IF	CITATIONS
37	Noncoding RNA Roles in Pharmacogenomic Responses to Aspirin: New Molecular Mechanisms for an Old Drug. BioMed Research International, 2021, 2021, 1-14.	1.9	1
38	The Atherogenic Index Log (Triglyceride/HDL-Cholesterol) as a Biomarker to Identify Type 2 Diabetes Patients with Poor Glycemic Control International Journal of Preventive Medicine, 2021, 12, 160.	0.4	1
39	Insulin resistance as a common clinical feature in diabetes mellitus, obesity, hypertension, dyslipidemia, and atherosclerosis deserves more attention in COVID-19. Journal of Research in Medical Sciences, 2021, 26, 98.	0.9	0