
Serge H M Söntjens

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/449679/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Marker-Independent Monitoring of in vitro and in vivo Degradation of Supramolecular Polymers Applied in Cardiovascular in situ Tissue Engineering. Frontiers in Cardiovascular Medicine, 2022, 9, .	1.1	5
2	Rotational Isomerism of an Amide Substituted Squaraine Dye: AÂCombined Spectroscopic and Computational Study. Journal of Organic Chemistry, 2021, 86, 13100-13103.	1.7	1
3	Magnetic Resonance Monitoring of Opaque Temperature-Sensitive Polymeric Scaffolds. ACS Applied Bio Materials, 2020, 3, 7639-7645.	2.3	0
4	Inconsistency in Graft Outcome of Bilayered Bioresorbable Supramolecular Arterial Scaffolds in Rats. Tissue Engineering - Part A, 2020, 27, 894-904.	1.6	11
5	Supramolecular Additive-Initiated Controlled Atom Transfer Radical Polymerization of Zwitterionic Polymers on Ureido-pyrimidinone-Based Biomaterial Surfaces. Macromolecules, 2020, 53, 4454-4464.	2.2	13
6	Imaging the In Vivo Degradation of Tissue Engineering Implants by Use of Supramolecular Radiopaque Biomaterials. Macromolecular Bioscience, 2020, 20, e2000024.	2.1	8
7	Temporal Change in the Mechanical Properties of Supramolecular Electrospun Vascular Scaffolds During Accelerated In-vitro Degradation. European Journal of Vascular and Endovascular Surgery, 2018, 56, e19.	0.8	0
8	Host Response and Neo-Tissue Development during Resorption of a Fast Degrading Supramolecular Electrospun Arterial Scaffold. Bioengineering, 2018, 5, 61.	1.6	24
9	In situ heart valve tissue engineering using a bioresorbable elastomeric implant – From material design to 12 months follow-up in sheep. Biomaterials, 2017, 125, 101-117.	5.7	231
10	Solid-Phase-Based Synthesis of Ureidopyrimidinone–Peptide ConjugatesÂ-for Supramolecular Biomaterials. Synlett, 2015, 26, 2707-2713.	1.0	23
11	Modeling the impact of scaffold architecture and mechanical loading on collagen turnover in engineered cardiovascular tissues. Biomechanics and Modeling in Mechanobiology, 2015, 14, 603-613.	1.4	5
12	Hydrolytic and oxidative degradation of electrospun supramolecular biomaterials: In vitro degradation pathways. Acta Biomaterialia, 2015, 27, 21-31.	4.1	68
13	Degree of Scaffold Degradation Influences Collagen (re)Orientation in Engineered Tissues. Tissue Engineering - Part A, 2014, 20, 1747-1757.	1.6	21
14	A modular approach to easily processable supramolecular bilayered scaffolds with tailorable properties. Journal of Materials Chemistry B, 2014, 2, 2483-2493.	2.9	61
15	Time-dependent failure of amorphous poly-d,l-lactide: Influence of molecular weight. Journal of the Mechanical Behavior of Biomedical Materials, 2012, 13, 69-77.	1.5	20
16	The effect of physical aging on the embrittlement of steam-sterilized polycarbonate. Journal of Materials Science, 2012, 47, 6043-6046.	1.7	10
17	Selfâ€Healing Supramolecular Polymers In Action. Macromolecular Chemistry and Physics, 2012, 213, 234-242.	1.1	193

18 New Biomaterials in Heart Valve Tissue Engineering. , 2012, , .

Serge H M SöNTJENS

#	Article	IF	CITATIONS
19	Time-dependent failure of amorphous polylactides in static loading conditions. Journal of Materials Science: Materials in Medicine, 2010, 21, 89-97.	1.7	32
20	Time-dependent failure in load-bearing polymers: a potential hazard in structural applications of polylactides. Journal of Materials Science: Materials in Medicine, 2010, 21, 871-878.	1.7	27
21	Thermoplastic Elastomers Based on Strong and Well-Defined Hydrogen-Bonding Interactions. Macromolecules, 2008, 41, 5703-5708.	2.2	85
22	Hydrogels for Osteochondral Repair Based on Photocrosslinkable Carbamate Dendrimers. Biomacromolecules, 2008, 9, 2863-2872.	2.6	71
23	Biodendrimer-Based Hydrogel Scaffolds for Cartilage Tissue Repair. Biomacromolecules, 2006, 7, 310-316.	2.6	206
24	Intermolecular2hJNNCoupling in Multiply Hydrogen-Bonded Ureidopyrimidinone Dimers in Solution. Journal of Organic Chemistry, 2003, 68, 9070-9075.	1.7	16
25	Quadruple hydrogen bonds of ureido-pyrimidinone moieties investigated in the solid state by 1H double-quantum MAS NMR spectroscopyPresented as part of a plenary lecture by H. W. Spiess at the annual meeting of the Deutsche Bunsen-Gesellschaft fżr Physikalische Chemie, Potsdam, May 9–11, 2002 Physical Chemistry Chemical Physics. 2002. 4. 3750-3758.	1.3	59
26	New Dendrimer–Peptide Host–Guest Complexes: Towards Dendrimers as Peptide Carriers. ChemBioChem, 2002, 3, 433.	1.3	59
27	Selective Formation of Cyclic Dimers in Solutions of Reversible Supramolecular Polymers. Macromolecules, 2001, 34, 3815-3818.	2.2	100
28	A Multiple Hydrogen-Bond Scaffold Based on Dipyrimidin-2-ylamine. Organic Letters, 2001, 3, 3887-3889.	2.4	22
29	Inverse Detection and Heteronuclear Editing in 1H–15N Correlation and 1H–1H Double-Quantum NMR Spectroscopy in the Solid State under Fast MAS. Journal of Magnetic Resonance, 2001, 150, 57-70.	1.2	63
30	A Scattering Electro-Optical Switch Based on Dendrimers Dispersed in Liquid Crystals. Advanced Materials, 2000, 12, 715-719.	11.1	54
31	Stability and Lifetime of Quadruply Hydrogen Bonded 2-Ureido-4[1H]-pyrimidinone Dimers. Journal of the American Chemical Society, 2000, 122, 7487-7493.	6.6	501
32	Liquid-Crystalline Properties of Poly(propylene imine) Dendrimers Functionalized with Cyanobiphenyl Mesogens at the Periphery. Chemistry - A European Journal, 1998, 4, 2456-2466.	1.7	140