Ren-Cang Li

List of Publications by Citations

Source: https://exaly.com/author-pdf/4496672/ren-cang-li-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

79	992	16	27
papers	citations	h-index	g-index
80	1,119	1.9	4.81
ext. papers	ext. citations	avg, IF	L-index

#	Paper	IF	Citations
79	On the ADI method for Sylvester equations. <i>Journal of Computational and Applied Mathematics</i> , 2009 , 233, 1035-1045	2.4	94
78	Relative Perturbation Theory: II. Eigenspace and Singular Subspace Variations. <i>SIAM Journal on Matrix Analysis and Applications</i> , 1998 , 20, 471-492	1.5	81
77	Relative Perturbation Theory: I. Eigenvalue and Singular Value Variations. <i>SIAM Journal on Matrix Analysis and Applications</i> , 1998 , 19, 956-982	1.5	71
76	New Perturbation Bounds for the Unitary Polar Factor. <i>SIAM Journal on Matrix Analysis and Applications</i> , 1995 , 16, 327-332	1.5	41
75	Minimization Principles for the Linear Response Eigenvalue Problem I: Theory. <i>SIAM Journal on Matrix Analysis and Applications</i> , 2012 , 33, 1075-1100	1.5	37
74	A note on eigenvalues of perturbed Hermitian matrices. <i>Linear Algebra and Its Applications</i> , 2005 , 395, 183-190	0.9	37
73	Alternating-directional Doubling Algorithm for M-Matrix Algebraic Riccati Equations. <i>SIAM Journal on Matrix Analysis and Applications</i> , 2012 , 33, 170-194	1.5	34
72	Minimization Principles for the Linear Response Eigenvalue Problem II: Computation. <i>SIAM Journal on Matrix Analysis and Applications</i> , 2013 , 34, 392-416	1.5	34
71	Structure-Preserving Model Reduction Using a Krylov Subspace Projection Formulation. <i>Communications in Mathematical Sciences</i> , 2005 , 3, 179-199	1	28
70	Accurate solutions of M-matrix algebraic Riccati equations. <i>Numerische Mathematik</i> , 2012 , 120, 671-700) 2.2	26
69	Convergence of the block Lanczos method for eigenvalue clusters. <i>Numerische Mathematik</i> , 2015 , 131, 83-113	2.2	23
68	Bounding the spectrum of large Hermitian matrices. Linear Algebra and Its Applications, 2011, 435, 480-	493)	23
67	On an Eigenvector-Dependent Nonlinear Eigenvalue Problem. <i>SIAM Journal on Matrix Analysis and Applications</i> , 2018 , 39, 1360-1382	1.5	23
66	Solving Secular Equations Stably and Efficiently 1993 ,		19
65	On perturbations of matrix pencils with real spectra, {a revisit}. <i>Mathematics of Computation</i> , 2002 , 72, 715-729	1.6	18
64	Norms of certain matrices with applications to variations of the spectra of matrices and matrix pencils. <i>Linear Algebra and Its Applications</i> , 1993 , 182, 199-234	0.9	18
63	Perturbation of Partitioned Hermitian Definite Generalized Eigenvalue Problems. <i>SIAM Journal on Matrix Analysis and Applications</i> , 2011 , 32, 642-663	1.5	15

(2015-1996)

62	A sharp version of Kahan's theorem on clustered eigenvalues. <i>Linear Algebra and Its Applications</i> , 1996 , 245, 147-155	0.9	15
61	Convergence analysis of Lanczos-type methods for the linear response eigenvalue problem. <i>Journal of Computational and Applied Mathematics</i> , 2013 , 247, 17-33	2.4	14
60	Accurate solutions of M-matrix Sylvester equations. <i>Numerische Mathematik</i> , 2012 , 120, 639-670	2.2	14
59	A block variational procedure for the iterative diagonalization of non-Hermitian random-phase approximation matrices. <i>Journal of Chemical Physics</i> , 2012 , 136, 034111	3.9	14
58	Krylov type subspace methods for matrix polynomials. <i>Linear Algebra and Its Applications</i> , 2006 , 415, 52-81	0.9	14
57	Trace minimization principles for positive semi-definite pencils. <i>Linear Algebra and Its Applications</i> , 2013 , 438, 3085-3106	0.9	13
56	A perturbation bound for definite pencils. <i>Linear Algebra and Its Applications</i> , 1993 , 179, 191-202	0.9	13
55	On the Generalized Lanczos Trust-Region Method. <i>SIAM Journal on Optimization</i> , 2017 , 27, 2110-2142	2	12
54	Rayleigh Quotient Based Optimization Methods for Eigenvalue Problems. <i>Series in Contemporary Applied Mathematics</i> , 2015 , 76-108	O	12
53	On perturbations of matrix pencils with real spectra. II. <i>Mathematics of Computation</i> , 1996 , 65, 637-646	1.6	12
52	Minimization principles and computation for the generalized linear response eigenvalue problem. <i>BIT Numerical Mathematics</i> , 2014 , 54, 31-54	1.7	11
51	Stable solutions of linear systems involving long chain of matrix multiplications. <i>Linear Algebra and Its Applications</i> , 2011 , 435, 659-673	0.9	10
50	On Meinardus' examples for the conjugate gradient method. <i>Mathematics of Computation</i> , 2008 , 77, 335-352	1.6	10
49	Structured backward error for palindromic polynomial eigenvalue problems. <i>Numerische Mathematik</i> , 2010 , 116, 95-122	2.2	9
48	Accuracy of Computed Eigenvectors Via Optimizing a Rayleigh Quotient. <i>BIT Numerical Mathematics</i> , 2004 , 44, 585-593	1.7	9
47	Highly accurate doubling algorithms for M-matrix algebraic Riccati equations. <i>Numerische Mathematik</i> , 2017 , 135, 733-767	2.2	8
46	Orthogonal canonical correlation analysis and applications. <i>Optimization Methods and Software</i> , 2020 , 35, 787-807	1.3	8
45	A Krylov Subspace Method for Large-Scale Second-Order Cone Linear Complementarity Problem. <i>SIAM Journal of Scientific Computing</i> , 2015 , 37, A2046-A2075	2.6	8

44	Sharpness in rates of convergence for the symmetric Lanczos method. <i>Mathematics of Computation</i> , 2010 , 79, 419-419	1.6	8
43	Analysis of the solution of the Sylvester equation using low-rank ADI with exact shifts. <i>Systems and Control Letters</i> , 2010 , 59, 248-257	2.4	8
42	A block Chebyshev-Davidson method for linear response eigenvalue problems. <i>Advances in Computational Mathematics</i> , 2016 , 42, 1103-1128	1.6	7
4 ¹	RayleighRitz Approximation For the Linear Response Eigenvalue Problem. <i>SIAM Journal on Matrix Analysis and Applications</i> , 2014 , 35, 765-782	1.5	7
40	Analysis of an alignment algorithm for nonlinear dimensionality reduction. <i>BIT Numerical Mathematics</i> , 2007 , 47, 873-885	1.7	7
39	Pinchings and Norms of Scaled Triangular Matrices. <i>Linear and Multilinear Algebra</i> , 2002 , 50, 15-21	0.7	7
38	Probabilistic Structure Learning for EEG/MEG Source Imaging With Hierarchical Graph Priors. <i>IEEE Transactions on Medical Imaging</i> , 2021 , 40, 321-334	11.7	7
37	Cluster-robust accuracy bounds for Ritz subspaces. <i>Linear Algebra and Its Applications</i> , 2015 , 480, 11-26	0.9	6
36	Backward perturbation analysis and residual-based error bounds for the linear response eigenvalue problem. <i>BIT Numerical Mathematics</i> , 2015 , 55, 869-896	1.7	6
35	The rate of convergence of GMRES on a tridiagonal Toeplitz linear system. <i>Numerische Mathematik</i> , 2009 , 112, 267-293	2.2	6
34	Vandermonde matrices with Chebyshev nodes. <i>Linear Algebra and Its Applications</i> , 2008 , 428, 1803-1832	20.9	6
33	Structure-Preserving Doubling Algorithms for Nonlinear Matrix Equations 2018,		6
32	A symmetric structure-preserving Q R algorithm for linear response eigenvalue problems. <i>Linear Algebra and Its Applications</i> , 2017 , 520, 191-214	0.9	5
31	A new look at the doubling algorithm for a structured palindromic quadratic eigenvalue problem. <i>Numerical Linear Algebra With Applications</i> , 2015 , 22, 393-409	1.6	5
30	Highly accurate doubling algorithm for quadratic matrix equation from quasi-birth-and-death process. <i>Linear Algebra and Its Applications</i> , 2019 , 583, 1-45	0.9	5
	Entered to Conference in the Consensation Consensation Consensation		
29	Extensions of Wielandt min that principles for positive semi-definite pencils. <i>Linear and Multilinear Algebra</i> , 2014 , 62, 1032-1048	0.7	5
29		0.7	5

(2020-2019)

An Efficient Numerical Method for the Symmetric Positive Definite Second-Order Cone Linear Complementarity Problem. <i>Journal of Scientific Computing</i> , 2019 , 79, 1608-1629	2.3	4	
Locally optimal and heavy ball GMRES methods. <i>Japan Journal of Industrial and Applied Mathematics</i> , 2016 , 33, 471-499	0.6	4	
THE HYPERBOLIC QUADRATIC EIGENVALUE PROBLEM. Forum of Mathematics, Sigma, 2015, 3,	1.4	4	
The rate of convergence of GMRES on a tridiagonal toeplitz linear system. II. <i>Linear Algebra and Its Applications</i> , 2009 , 431, 2425-2436	0.9	4	
A Self-consistent-field Iteration for Orthogonal CCA. <i>IEEE Transactions on Pattern Analysis and Machine Intelligence</i> , 2020 , PP,	13.3	4	
A new two-phase structure-preserving doubling algorithm for critically singular M-matrix algebraic Riccati equations. <i>Numerical Linear Algebra With Applications</i> , 2016 , 23, 291-313	1.6	4	
Monotonicity of unitarily invariant norms. Linear Algebra and Its Applications, 2015, 466, 254-266	0.9	3	
A Fast Algorithm For Fast Train Palindromic Quadratic Eigenvalue Problems. <i>SIAM Journal of Scientific Computing</i> , 2016 , 38, A3410-A3429	2.6	3	
Perturbation of multiple eigenvalues of Hermitian matrices. <i>Linear Algebra and Its Applications</i> , 2012 , 437, 202-213	0.9	3	
Simultaneous Similarity Reductions for a Pair of Matrices to Condensed Forms. <i>Communications in Mathematics and Statistics</i> , 2014 , 2, 139-153	0.5	3	
Eigenvalues of symmetrizable matrices. BIT Numerical Mathematics, 1998, 38, 1-11	1.7	3	
A Nonlinear QR Algorithm for Banded Nonlinear Eigenvalue Problems. <i>ACM Transactions on Mathematical Software</i> , 2016 , 43, 1-19	2.3	3	
Accurate Numerical Solution for Shifted M-Matrix Algebraic Riccati Equations. <i>Journal of Scientific Computing</i> , 2020 , 84, 1	2.3	2	
Self-Corrective Iterations (SCI) for generalized diagonally dominant matrices. <i>Journal of Computational and Applied Mathematics</i> , 2016 , 302, 285-300	2.4	2	
Error bounds for approximate deflating subspaces for linear response eigenvalue problems. <i>Linear Algebra and Its Applications</i> , 2017 , 528, 273-289	0.9	2	
Accurate numerical solution for structured M-matrix algebraic Riccati equations. <i>Journal of Computational and Applied Mathematics</i> , 2021 , 396, 113614	2.4	2	
Deflating irreducible singular M-matrix algebraic Riccati equations. <i>Numerical Algebra, Control and Optimization</i> , 2013 , 3, 491-518	1.7	1	
Perturbation theory for Hermitian quadratic eigenvalue problem damped and simultaneously diagonalizable systems. <i>Applied Mathematics and Computation</i> , 2020 , 371, 124921	2.7	1	
	Locally optimal and heavy ball GMRES methods. Japan Journal of Industrial and Applied Mathematics, 2016, 33, 471-499 THE HYPERBOLIC QUADRATIC EIGENVALUE PROBLEM. Forum of Mathematics, Sigma, 2015, 3, The rate of convergence of GMRES on a tridiagonal toeplitz linear system. III. Linear Algebra and Its Applications, 2009, 431, 2425-2436 A Self-consistent-field Iteration for Orthogonal CCA. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, PP, A new two-phase structure-preserving doubling algorithm for critically singular M-matrix algebraic Riccati equations. Numerical Linear Algebra With Applications, 2016, 23, 291-313 Monotonicity of unitarily invariant norms. Linear Algebra and Its Applications, 2015, 466, 254-266 A Fast Algorithm For Fast Train Palindromic Quadratic Eigenvalue Problems. SIAM Journal of Scientific Computing, 2016, 38, A3410-A3429 Perturbation of multiple eigenvalues of Hermitian matrices. Linear Algebra and Its Applications, 2012, 437, 202-213 Simultaneous Similarity Reductions for a Pair of Matrices to Condensed Forms. Communications in Mathematics and Statistics, 2014, 2, 139-153 Eigenvalues of symmetrizable matrices. BIT Numerical Mathematics, 1998, 38, 1-11 A Nonlinear QR Algorithm for Banded Nonlinear Eigenvalue Problems. ACM Transactions on Mathematical Software, 2016, 43, 1-19 Accurate Numerical Solution for Shifted M-Matrix Algebraic Riccati Equations. Journal of Scientific Computational and Applied Mathematics, 2016, 302, 285-300 Error bounds for approximate deflating subspaces for linear response eigenvalue problems. Linear Algebra and its Applications, 2017, 528, 273-289 Accurate numerical solution for Structured M-matrix algebraic Riccati equations. Journal of Computational and Applied Mathematics, 2017, 396, 113614 Deflating irreducible singular M-matrix algebraic Riccati equations. Numerical Algebra, Control and Optimization, 2013, 3, 491-518	Locally optimal and heavy ball GMRES methods. Japan Journal of Industrial and Applied Mathematics 2016, 33, 471-499 THE HYPERBOLIC QUADRATIC EIGENVALUE PROBLEM. Forum of Mathematics, Sigma, 2015, 3, 1.4 The rate of convergence of GMRES on a tridiagonal toeplitz linear system. II. Linear Algebra and Its Applications, 2009, 431, 2425-2436 A Self-consistent-field Iteration for Orthogonal CCA. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, PP, 133 A new two-phase structure-preserving doubling algorithm for critically singular M-matrix algebraic Riccati equations. Numerical Linear Algebra With Applications, 2016, 23, 291-313 Monotonicity of unitarily invariant norms. Linear Algebra and Its Applications, 2015, 466, 254-266 0.9 A Fast Algorithm For Fast Train Palindromic Quadratic Eigenvalue Problems. SIAM Journal of Scientific Computing, 2016, 38, A3410-A3429 Perturbation of multiple eigenvalues of Hermitian matrices. Linear Algebra and Its Applications, 2012, 437, 202-213 Simultaneous Similarity Reductions for a Pair of Matrices to Condensed Forms. Communications in Mathematics and Statistics, 2014, 2, 139-153 Eigenvalues of symmetrizable matrices. BIT Numerical Mathematics, 1998, 38, 1-11 A Nonlinear QR Algorithm for Banded Nonlinear Eigenvalue Problems. ACM Transactions on Mathematical Software, 2016, 43, 1-19 Accurate Numerical Solution for Shifted M-Matrix Algebraic Riccati Equations. Journal of Computing, 2020, 84, 1 Self-Corrective Iterations (SCI) for generalized diagonally dominant matrices. Journal of Computional and Applied Mathematics, 2016, 302, 285-300 Error bounds for approximate deflating subspaces for linear response eigenvalue problems. Linear Algebra and Its Applications, 2017, 528, 273-289 Accurate numerical solution for structured M-matrix algebraic Riccati equations. Journal of Computational and Applied Mathematics, 2021, 396, 113614 Deflating irreducible singular M-matrix algebraic Riccati equations. Numerical Algebra, Control and Optimization, 2013, 3, 491	Locally optimal and heavy ball GMRES methods. Japan Journal of Industrial and Applied Mathematics 2016, 33, 471-499 Locally optimal and heavy ball GMRES methods. Japan Journal of Industrial and Applied Mathematics 2016, 33, 471-499 THE HYPERBOLIC QUADRATIC EIGENVALUE PROBLEM. Forum of Mathematics, Sigma, 2015, 3, 1.4 4 The rate of convergence of GMRES on a tridiagonal toeplitz linear system. II. Linear Algebra and Its Applications, 2009, 431, 2425-2436 A Self-consistent-field Iteration for Orthogonal CCA. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, PP, A new two-phase structure-preserving doubling algorithm for critically singular M-matrix algebraic Riccati equations. Numerical Linear Algebra With Applications, 2016, 23, 291-313 Monotonicity of unitarily invariant norms. Linear Algebra and Its Applications, 2015, 466, 254-266 A Fast Algorithm For Fast Train Palindromic Quadratic Eigenvalue Problems. SIAM Journal of Scientific Computing, 2016, 38, A3410-A3429 Perturbation of multiple eigenvalues of Hermitian matrices. Linear Algebra and Its Applications, 2012, 437, 202-213 Simultaneous Similarity Reductions for a Pair of Matrices to Condensed Forms. Communications in Mathematics and Statistics, 2014, 2, 139-153 Eigenvalues of symmetrizable matrices. BIT Numerical Mathematics, 1998, 38, 1-11 A Nonlinear QR Algorithm for Banded Nonlinear Eigenvalue Problems. ACM Transactions on Mathematical Software, 2016, 43, 1-19 Accurate Numerical Solution for Shifted M-Matrix Algebraic Riccati Equations. Journal of Scientific Computing, 2020, 84, 1 Self-Corrective Iterations (SCI) for generalized diagonally dominant matrices. Journal of Computational and Applied Mathematics, 2016, 302, 285-300 Error bounds for approximate deflating subspaces for linear response eigenvalue problems. Linear Algebra and Its Applications, 2017, 528, 273-289 Accurate numerical solution for structured M-matrix algebraic Riccati equations. Journal of Computational and Applied Mathematics, 2016, 305, 13614 Def

8	. IEEE Transactions on Big Data, 2020 , 1-1	3.2	1
7	Sharp Estimation of Convergence Rate for Self-Consistent Field Iteration to Solve Eigenvector-Dependent Nonlinear Eigenvalue Problems. <i>SIAM Journal on Matrix Analysis and Applications</i> , 2022 , 43, 301-327	1.5	O
6	A self-consistent-field iteration for MAXBET with an application to multi-view feature extraction. <i>Advances in Computational Mathematics</i> , 2022 , 48, 1	1.6	O
5	Perturbation analysis for matrix joint block diagonalization. <i>Linear Algebra and Its Applications</i> , 2019 , 581, 163-197	0.9	
4	Recent Progress in Linear Response Eigenvalue Problems. <i>Lecture Notes in Computational Science and Engineering</i> , 2017 , 287-304	0.3	
3	Structured backward error for palindromic polynomial eigenvalue problems, II: Approximate eigentriplets. <i>Frontiers of Mathematics in China</i> , 2018 , 13, 1397-1426	0.8	
2	On an eigenvector-dependent nonlinear eigenvalue problem from the perspective of relative perturbation theory. <i>Journal of Computational and Applied Mathematics</i> , 2021 , 395, 113596	2.4	
1	A least squares approach for saddle point problems. <i>Japan Journal of Industrial and Applied Mathematics</i> ,1	0.6	