Sathyamangalam Swaminathan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4496619/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Expression of hepatitis B surface antigen in the methylotrophic yeast Pichia pastoris using the GAP promoter. Journal of Biotechnology, 2001, 88, 21-35.	3.8	133
2	Effect of Copy Number on the Expression Levels of Hepatitis B Surface Antigen in the Methylotrophic Yeast Pichia pastoris. Protein Expression and Purification, 2001, 21, 71-80.	1.3	126
3	p300/cAMP-responsive Element-binding Protein Interactions with Ets-1 and Ets-2 in the Transcriptional Activation of the Human Stromelysin Promoter. Journal of Biological Chemistry, 1999, 274, 17342-17352.	3.4	123
4	Electrospun manganese (III) oxide nanofiber based electrochemical DNA-nanobiosensor for zeptomolar detection of dengue consensus primer. Biosensors and Bioelectronics, 2017, 90, 378-387.	10.1	89
5	Production of interferon-α in high cell density cultures of recombinant Escherichia coli and its single step purification from refolded inclusion body proteins. Applied Microbiology and Biotechnology, 2000, 53, 655-660.	3.6	82
6	Simple high-cell density fed-batch technique for high-level recombinant protein production with Pichia pastoris: Application to intracellular production of Hepatitis B surface antigen. Microbial Cell Factories, 2009, 8, 13.	4.0	81
7	Application of simple fed-batch technique to high-level secretory production of insulin precursor using Pichia pastoris with subsequent purification and conversion to human insulin. Microbial Cell Factories, 2010, 9, 31.	4.0	78
8	Abrogation of a mitotic checkpoint by E2 proteins from oncogenic human papillomaviruses correlates with increased turnover of the p53 tumor suppressor protein. EMBO Journal, 1997, 16, 318-331.	7.8	72
9	An Envelope Domain Ill–based Chimeric Antigen Produced in Pichia pastoris Elicits Neutralizing Antibodies Against All Four Dengue Virus Serotypes. American Journal of Tropical Medicine and Hygiene, 2008, 79, 353-363.	1.4	69
10	A tetravalent virus-like particle vaccine designed to display domain III of dengue envelope proteins induces multi-serotype neutralizing antibodies in mice and macaques which confer protection against antibody dependent enhancement in AG129 mice. PLoS Neglected Tropical Diseases, 2018, 12, e0006191.	3.0	67
11	High-level expression and one-step purification of recombinant dengue virus type 2 envelope domain III protein in Escherichia coli. Protein Expression and Purification, 2004, 33, 80-91.	1.3	66
12	Cissampelos pareira Linn: Natural Source of Potent Antiviral Activity against All Four Dengue Virus Serotypes. PLoS Neglected Tropical Diseases, 2015, 9, e0004255.	3.0	58
13	An adenovirus type 5 (AdV5) vector encoding an envelope domain III-based tetravalent antigen elicits immune responses against all four dengue viruses in the presence of prior AdV5 immunity. Vaccine, 2009, 27, 6011-6021.	3.8	57
14	Pichia pastoris-Expressed Dengue 2 Envelope Forms Virus-Like Particles without Pre-Membrane Protein and Induces High Titer Neutralizing Antibodies. PLoS ONE, 2013, 8, e64595.	2.5	55
15	Dengue: Recent Advances in Biology and Current Status of Translational Research. Current Molecular Medicine, 2009, 9, 152-173.	1.3	53
16	Replication-Defective Adenoviral Vaccine Vector for the Induction of Immune Responses to Dengue Virus Type 2. Journal of Virology, 2003, 77, 12907-12913.	3.4	52
17	Recombinant dengue virus type 2 envelope/hepatitis B surface antigen hybrid protein expressed in Pichia pastoris can function as a bivalent immunogen. Journal of Biotechnology, 2002, 99, 97-110.	3.8	50
18	Adenovirus-mediated tissue-targeted expression of the HSVtk gene for the treatment of breast cancer. Gene Therapy, 1999, 6, 854-864.	4.5	49

#	Article	IF	CITATIONS
19	Dengue vaccines: state of the art. Expert Opinion on Therapeutic Patents, 2010, 20, 819-835.	5.0	48
20	Virus-like particles displaying envelope domain III of dengue virus type 2 induce virus-specific antibody response in mice. Vaccine, 2013, 31, 873-878.	3.8	45
21	A small molecule inhibitor of dengue virus type 2 protease inhibits the replication of all four dengue virus serotypes in cell culture. Virology Journal, 2015, 12, 16.	3.4	42
22	Induction of neutralizing antibodies and T cell responses by dengue virus type 2 envelope domain III encoded by plasmid and adenoviral vectors. Vaccine, 2006, 24, 6513-6525.	3.8	41
23	Chimeric Hepatitis B core antigen virus-like particles displaying the envelope domain III of dengue virus type 2. Journal of Nanobiotechnology, 2012, 10, 30.	9.1	41
24	An adenovirus prime/plasmid boost strategy for induction of equipotent immune responses to two dengue virus serotypes. BMC Biotechnology, 2007, 7, 10.	3.3	39
25	INDUCTION OF NEUTRALIZING ANTIBODIES SPECIFIC TO DENGUE VIRUS SEROTYPES 2 AND 4 BY A BIVALENT ANTIGEN COMPOSED OF LINKED ENVELOPE DOMAINS III OF THESE TWO SEROTYPES. American Journal of Tropical Medicine and Hygiene, 2006, 74, 266-277.	1.4	39
26	The prevalence of antibodies to adenovirus serotype 5 in an adult Indian population and implications for adenovirus vector vaccines. Journal of Medical Virology, 2010, 82, 407-414.	5.0	36
27	Recombinant Multiepitope Protein for Early Detection of Dengue Infections. Vaccine Journal, 2006, 13, 59-67.	3.1	35
28	Transactivation of Adenovirus E2-early Promoter by E1A and E4 6/7 in the Context of Viral Chromosome. Journal of Molecular Biology, 1996, 258, 736-746.	4.2	33
29	A custom-designed recombinant multiepitope protein as a dengue diagnostic reagent. Protein Expression and Purification, 2005, 41, 136-147.	1.3	33
30	Pichia pastoris-expressed dengue 3 envelope-based virus-like particles elicit predominantly domain III-focused high titer neutralizing antibodies. Frontiers in Microbiology, 2015, 6, 1005.	3.5	33
31	An envelope domain III-based chimeric antigen produced in Pichia pastoris elicits neutralizing antibodies against all four dengue virus serotypes. American Journal of Tropical Medicine and Hygiene, 2008, 79, 353-63.	1.4	33
32	Pichia pastoris-expressed dengue virus type 2 envelope domain III elicits virus-neutralizing antibodies. Journal of Virological Methods, 2010, 167, 10-16.	2.1	32
33	Dengue vaccine development: Global and Indian scenarios. International Journal of Infectious Diseases, 2019, 84, S80-S86.	3.3	32
34	Pichia pastoris-Expressed Bivalent Virus-Like Particulate Vaccine Induces Domain III-Focused Bivalent Neutralizing Antibodies without Antibody-Dependent Enhancement in Vivo. Frontiers in Microbiology, 2017, 8, 2644.	3.5	29
35	Affinity Purification of Recombinant Interferon- $\hat{l}\pm$ on a Mimetic Ligand Adsorbent. Protein Expression and Purification, 1999, 15, 236-242.	1.3	27
36	Optimization of conditions for secretion of dengue virus type 2 envelope domain III using Pichia pastoris. Journal of Bioscience and Bioengineering, 2010, 110, 408-414.	2.2	26

#	Article	IF	CITATIONS
37	Virus-like particles derived from Pichia pastoris-expressed dengue virus type 1 glycoprotein elicit homotypic virus-neutralizing envelope domain III-directed antibodies. BMC Biotechnology, 2016, 16, 50.	3.3	26
38	Dengue vaccine efficacy trial: does interference cause failure?. Lancet Infectious Diseases, The, 2013, 13, 191-192.	9.1	25
39	Recombinant Dengue Virus 4 Envelope Glycoprotein Virus-Like Particles Derived from <i>Pichia pastoris</i> are Capable of Eliciting Homotypic Domain III-Directed Neutralizing Antibodies. American Journal of Tropical Medicine and Hygiene, 2017, 96, 126-134.	1.4	25
40	Expression and Purification of Dengue Virus Type 2 Envelope Protein as a Fusion with Hepatitis B Surface Antigen in Pichia pastoris. Protein Expression and Purification, 2001, 23, 84-96.	1.3	24
41	The identification of immunodominant linear epitopes of dengue type 2 virus capsid and NS4a proteins using pin-bound peptides. Virus Research, 2005, 112, 60-68.	2.2	24
42	Major Antifungal Activity from the Bulbs of Indian Squill Urginea indica Is a Chitinase. Biotechnology Progress, 2006, 22, 631-637.	2.6	24
43	Dengue envelope-based â€~four-in-one' virus-like particles produced using Pichia pastoris induce enhancement-lacking, domain III-directed tetravalent neutralising antibodies in mice. Scientific Reports, 2018, 8, 8643.	3.3	24
44	Evaluation of envelope domain III-based single chimeric tetravalent antigen and monovalent antigen mixtures for the detection of anti-dengue antibodies in human sera. BMC Infectious Diseases, 2011, 11, 64.	2.9	23
45	Adenovirus Delivered Short Hairpin RNA Targeting a Conserved Site in the 5′ Non-Translated Region Inhibits All Four Serotypes of Dengue Viruses. PLoS Neglected Tropical Diseases, 2012, 6, e1735.	3.0	23
46	Dengue and Zika virus infections are enhanced by live attenuated dengue vaccine but not by recombinant DSV4 vaccine candidate in mouse models. EBioMedicine, 2020, 60, 102991.	6.1	21
47	Simian Virus 40 Large-T Bypasses the Translational Block Imposed by the Phosphorylation of elF-2α. Virology, 1996, 219, 321-323.	2.4	20
48	Regulation of Cellular Genes in a Chromosomal Context by the Retinoblastoma Tumor Suppressor Protein. Molecular and Cellular Biology, 1998, 18, 4565-4576.	2.3	19
49	Enhanced periplasmic expression of high affinity humanized scFv against Hepatitis B surface antigen by codon optimization. Protein Expression and Purification, 2010, 74, 272-279.	1.3	19
50	<i>Pichia pastoris</i> -expressed Zika virus envelope domain III on a virus-like particle platform: design, production and immunological evaluation. Pathogens and Disease, 2019, 77, .	2.0	19
51	Single Antigen Detects both Immunoglobulin M (IgM) and IgG Antibodies Elicited by All Four Dengue Virus Serotypes. Vaccine Journal, 2007, 14, 1505-1514.	3.1	18
52	Investigational drugs in early development for treating dengue infection. Expert Opinion on Investigational Drugs, 2016, 25, 1059-1069.	4.1	18
53	Drugs for dengue: a patent review (2010 – 2014). Expert Opinion on Therapeutic Patents, 2014, 24, 1171-1184.	5.0	17
54	Activation of a dual adenovirus promoter containing nonconsensus TATA motifs inSchizosaccharomyces pombe: role of TATA sequences in the efficiency of transcription. Nucleic Acids Research, 1993, 21, 2737-2746.	14.5	16

#	ARTICLE	IF	CITATIONS
55	Expression, purification and characterization of in vivo biotinylated dengue virus envelope domain III based tetravalent antigen. Protein Expression and Purification, 2010, 74, 99-105.	1.3	16
56	Induction of neutralizing antibodies specific to dengue virus serotypes 2 and 4 by a bivalent antigen composed of linked envelope domains III of these two serotypes. American Journal of Tropical Medicine and Hygiene, 2006, 74, 266-77.	1.4	16
57	Simultaneous detection of Human Immunodeficiency Virus 1 and Hepatitis B virus infections using a dual-label time-resolved fluorometric assay. Journal of Nanobiotechnology, 2010, 8, 27.	9.1	15
58	A highly sensitive and specific time resolved fluorometric bridge assay for antibodies to HIV-1 and -2. Journal of Virological Methods, 2011, 173, 24-30.	2.1	14
59	A Quinoline Compound Inhibits the Replication of Dengue virus Serotypes 1–4 in Vero Cells. Antiviral Therapy, 2018, 23, 385-394.	1.0	12
60	Zika virus envelope nanoparticle antibodies protect mice without risk of disease enhancement. EBioMedicine, 2020, 54, 102738.	6.1	11
61	Dengue-specific subviral nanoparticles: design, creation and characterization. Journal of Nanobiotechnology, 2013, 11, 15.	9.1	9
62	Diagnostic Potential and Antigenic Properties of Recombinant Tick-Borne Encephalitis Virus Subviral Particles Expressed in Mammalian Cells from Semliki Forest Virus Replicons. Journal of Clinical Microbiology, 2014, 52, 814-822.	3.9	9
63	A synthetic dengue virus antigen elicits enhanced antibody titers when linked to, but not mixed with, Mycobacterium tuberculosis HSP70 domain II. Vaccine, 2006, 24, 4716-4726.	3.8	8
64	Next generation designer virus-like particle vaccines for dengue. Expert Review of Vaccines, 2019, 18, 105-117.	4.4	8
65	Inexpensive Designer Antigen for Anti-HIV Antibody Detection with High Sensitivity and Specificity. Vaccine Journal, 2010, 17, 335-341.	3.1	6
66	Adenovirus-vectored vaccines. Expert Opinion on Therapeutic Patents, 2008, 18, 293-307.	5.0	5
67	Experimental Dengue Vaccines. , 2013, , 135-151.		5
68	Escherichia coli–expressed near full length HIV-1 envelope glycoprotein is a highly sensitive and specific diagnostic antigen. BMC Infectious Diseases, 2012, 12, 325.	2.9	4
69	The RNA secondary structural variation in the cyclization elements of the dengue genome and the possible implications in pathogenicity. VirusDisease, 2020, 31, 299-307.	2.0	3
70	Tetravalent Dengue Vaccine in Healthy Children. New England Journal of Medicine, 2020, 382, 1769-1771.	27.0	0
71	Adenovirus type 5 vectors encoding short hairpin RNAs targeting dengue virus 5' non-translated region and capsid gene suppress pre-established dengue infection in cultured epithelial and myeloid cells. Virus Research, 2021, 304, 198527.	2.2	0