
Claire Soudais

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4496350/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Inherited TNFSF9 deficiency causes broad Epstein–Barr virus infection with EBV+ smooth muscle tumors. Journal of Experimental Medicine, 2022, 219, .	8.5	7
2	Impaired lymphocyte function and differentiation in CTPS1-deficient patients result from a hypomorphic homozygous mutation. JCI Insight, 2020, 5, .	5.0	29
3	Inherited CD70 deficiency in humans reveals a critical role for the CD70–CD27 pathway in immunity to Epstein-Barr virus infection. Journal of Experimental Medicine, 2017, 214, 73-89.	8.5	122
4	Impairment of immunity to <i>Candida</i> and <i>Mycobacterium</i> in humans with bi-allelic <i>RORC</i> mutations. Science, 2015, 349, 606-613.	12.6	366
5	In Vitro and In Vivo Analysis of the Gram-Negative Bacteria–Derived Riboflavin Precursor Derivatives Activating Mouse MAIT Cells. Journal of Immunology, 2015, 194, 4641-4649.	0.8	105
6	Mucosal-associated invariant T cell alterations in obese and type 2 diabetic patients. Journal of Clinical Investigation, 2015, 125, 1752-1762.	8.2	272
7	Mucosal-associated invariant T cell–rich congenic mouse strain allows functional evaluation. Journal of Clinical Investigation, 2015, 125, 4171-4185.	8.2	143
8	Mutant Mice Lacking the p53 C-Terminal Domain Model Telomere Syndromes. Cell Reports, 2013, 3, 2046-2058.	6.4	64
9	Double Positive Thymocytes Select Mucosal-Associated Invariant T Cells. Journal of Immunology, 2013, 191, 6002-6009.	0.8	121
10	MAIT Cells Detect and Efficiently Lyse Bacterially-Infected Epithelial Cells. PLoS Pathogens, 2013, 9, e1003681.	4.7	338
11	Mucosal-associated invariant T cells: unconventional development and function. Trends in Immunology, 2011, 32, 212-218.	6.8	202
12	Human MAIT cells are xenobiotic-resistant, tissue-targeted, CD161hi IL-17–secreting T cells. Blood, 2011, 117, 1250-1259.	1.4	908
13	Anti-bacterial Function of Mucosal Associated Invariant T Cells. Clinical Immunology, 2010, 135, S34-S35.	3.2	0
14	Antimicrobial activity of mucosal-associated invariant T cells. Nature Immunology, 2010, 11, 701-708.	14.5	828
15	MR1 antigen presentation to mucosal-associated invariant T cells was highly conserved in evolution. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 8290-8295.	7.1	162
16	Stepwise Development of MAIT Cells in Mouse and Human. PLoS Biology, 2009, 7, e1000054.	5.6	531
17	IFN-γ Mediates the Rejection of Haematopoietic Stem Cells in IFN-γR1-Deficient Hosts. PLoS Medicine, 2008, 5, e26.	8.4	67
18	Importance of T Cells, Gamma Interferon, and Tumor Necrosis Factor in Immune Control of the Rapid Grower <i>Mycobacterium abscessus</i> in C57BL/6 Mice. Infection and Immunity, 2007, 75, 5898-5907.	2.2	89

2

CLAIRE SOUDAIS

#	Article	lF	CITATIONS
19	Hypervirulence of a Rough Variant of the <i>Mycobacterium abscessus</i> Type Strain. Infection and Immunity, 2007, 75, 1055-1058.	2.2	164
20	Novel STAT1 Alleles in Otherwise Healthy Patients with Mycobacterial Disease. PLoS Genetics, 2006, 2, e131.	3.5	171
21	Gains of glycosylation comprise an unexpectedly large group of pathogenic mutations. Nature Genetics, 2005, 37, 692-700.	21.4	198
22	Longâ€ŧerm in vivo transduction of neurons throughout the rat central nervous system using novel helperâ€dependent CAVâ€2 vectors. FASEB Journal, 2004, 18, 1-20.	0.5	101
23	Severe combined immunodeficiency caused by deficiency in either the δ or the ε subunit of CD3. Journal of Clinical Investigation, 2004, 114, 1512-1517.	8.2	141
24	Severe combined immunodeficiency caused by deficiency in either the δ or the ε subunit of CD3. Journal of Clinical Investigation, 2004, 114, 1512-1517.	8.2	78
25	Pyogenic Bacterial Infections in Humans with IRAK-4 Deficiency. Science, 2003, 299, 2076-2079.	12.6	820
26	The interleukin-12/interferon- \hat{I}^3 loop is required for protective immunity to experimental and natural infections by Mycobacterium. , 2003, , 259-278.		0
27	In Vivo Neuronal Tracing with GFP-TTC Gene Delivery. Molecular and Cellular Neurosciences, 2002, 20, 627-637.	2.2	59
28	Inherited Interleukin-12 Deficiency: IL12B Genotype and Clinical Phenotype of 13 Patients from Six Kindreds. American Journal of Human Genetics, 2002, 70, 336-348.	6.2	265
29	Factors influencing cross-presentation of non-self antigens expressed from recombinant adeno-associated virus vectors. Journal of Gene Medicine, 2001, 3, 260-270.	2.8	54
30	Preferential transduction of neurons by canine adenovirus vectors and their efficient retrograde transport in vivo. FASEB Journal, 2001, 15, 1-23.	0.5	221
31	Characterization of cis-Acting Sequences Involved in Canine Adenovirus Packaging. Molecular Therapy, 2001, 3, 631-640.	8.2	47
32	Gene therapy of severe combined immunodeficiencies. Immunological Reviews, 2000, 178, 13-20.	6.0	18
33	Stable and functional lymphoid reconstitution of common cytokine receptor Î ³ chain deficient mice by retroviral-mediated gene transfer. Blood, 2000, 95, 3071-3077.	1.4	90
34	Canine Adenovirus Type 2 Attachment and Internalization: Coxsackievirus-Adenovirus Receptor, Alternative Receptors, and an RGD-Independent Pathway. Journal of Virology, 2000, 74, 10639-10649.	3.4	109
35	GATA4 transcription factor is required for ventral morphogenesis and heart tube formation Genes and Development, 1997, 11, 1048-1060.	5.9	933
36	Independent mutations of the human CD3–ε gene resulting in a T cell receptor/CD3 complex immunodeficiency. Nature Genetics, 1993, 3, 77-81.	21.4	122