
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4496258/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	ERS statement on respiratory muscle testing at rest and during exercise. European Respiratory Journal, 2019, 53, 1801214.	6.7	379
2	Pulmonary Gas Exchange Abnormalities in Mild Chronic Obstructive Pulmonary Disease. Implications for Dyspnea and Exercise Intolerance. American Journal of Respiratory and Critical Care Medicine, 2015, 191, 1384-1394.	5.6	180
3	Respiratory mechanics during exercise in endurance-trained men and women. Journal of Physiology, 2007, 581, 1309-1322.	2.9	175
4	Inspiratory muscle training attenuates the human respiratory muscle metaboreflex. Journal of Physiology, 2007, 584, 1019-1028.	2.9	169
5	Decline of Resting Inspiratory Capacity in COPD. Chest, 2012, 141, 753-762.	0.8	150
6	Does dynamic hyperinflation contribute to dyspnoea during exercise in patients with COPD?. European Respiratory Journal, 2012, 40, 322-329.	6.7	141
7	Inspiratory Capacity during Exercise: Measurement, Analysis, and Interpretation. Pulmonary Medicine, 2013, 2013, 1-13.	1.9	134
8	Face Masks and the Cardiorespiratory Response to Physical Activity in Health and Disease. Annals of the American Thoracic Society, 2021, 18, 399-407.	3.2	118
9	Evidence for dysanapsis using computed tomographic imaging of the airways in older ex-smokers. Journal of Applied Physiology, 2009, 107, 1622-1628.	2.5	112
10	Pulmonary function and functional capacity in COVID-19 survivors with persistent dyspnoea. Respiratory Physiology and Neurobiology, 2021, 288, 103644.	1.6	111
11	Mechanisms of exercise intolerance in Global Initiative for Chronic Obstructive Lung Disease grade 1 COPD. European Respiratory Journal, 2014, 44, 1177-1187.	6.7	110
12	Sex differences in exercise-induced diaphragmatic fatigue in endurance-trained athletes. Journal of Applied Physiology, 2010, 109, 35-46.	2.5	106
13	Does the Respiratory System Limit Exercise in Mild Chronic Obstructive Pulmonary Disease?. American Journal of Respiratory and Critical Care Medicine, 2013, 187, 1315-1323.	5.6	97
14	Effects of BMI on Static Lung Volumes in Patients With Airway Obstruction. Chest, 2011, 140, 461-468.	0.8	86
15	Sex differences in the resistive and elastic work of breathing during exercise in endurance-trained athletes. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2009, 297, R166-R175.	1.8	75
16	Mechanisms of exertional dyspnoea in symptomatic smokers without COPD. European Respiratory Journal, 2016, 48, 694-705.	6.7	70
17	Sex differences in exertional dyspnea in patients with mild COPD: Physiological mechanisms. Respiratory Physiology and Neurobiology, 2011, 177, 218-227.	1.6	65
18	Exertional hypoxemia is more severe in fibrotic interstitial lung disease than in COPD. Respirology, 2018, 23, 392-398.	2.3	63

#	Article	IF	CITATIONS
19	Effect of thoracic gas compression and bronchodilation on the assessment of expiratory flow limitation during exercise in healthy humans. Respiratory Physiology and Neurobiology, 2010, 170, 279-286.	1.6	60
20	Respiratory function and the obesity paradox. Current Opinion in Clinical Nutrition and Metabolic Care, 2010, 13, 618-624.	2.5	55
21	Effects of inspiratory muscle training on respiratory muscle electromyography and dyspnea during exercise in healthy men. Journal of Applied Physiology, 2017, 122, 1267-1275.	2.5	51
22	The effects of age and sex on mechanical ventilatory constraint and dyspnea during exercise in healthy humans. Journal of Applied Physiology, 2018, 124, 1092-1106.	2.5	50
23	Sex differences in the intensity and qualitative dimensions of exertional dyspnea in physically active young adults. Journal of Applied Physiology, 2015, 119, 998-1006.	2.5	48
24	Effects of hyperoxia on dyspnoea and exercise endurance in fibrotic interstitial lung disease. European Respiratory Journal, 2017, 49, 1602494.	6.7	45
25	Sex differences in diaphragmatic fatigue: the cardiovascular response to inspiratory resistance. Journal of Physiology, 2018, 596, 4017-4032.	2.9	45
26	Respiratory muscle endurance after training in athletes and non-athletes: A systematic review and meta-analysis. Physical Therapy in Sport, 2016, 17, 76-86.	1.9	42
27	Sternocleidomastoid muscle deoxygenation in response to incremental inspiratory threshold loading measured by near infrared spectroscopy. Respiratory Physiology and Neurobiology, 2011, 178, 202-209.	1.6	40
28	Diaphragm Recruitment Increases during a Bout of Targeted Inspiratory Muscle Training. Medicine and Science in Sports and Exercise, 2016, 48, 1179-1186.	0.4	39
29	High Oxygen Delivery to Preserve Exercise Capacity in Patients with Idiopathic Pulmonary Fibrosis Treated with Nintedanib. Methodology of the HOPE-IPF Study. Annals of the American Thoracic Society, 2016, 13, 1640-1647.	3.2	37
30	Sex differences in respiratory muscle activation patterns during high-intensity exercise in healthy humans. Respiratory Physiology and Neurobiology, 2018, 247, 57-60.	1.6	32
31	Resting Physiological Correlates of Reduced Exercise Capacity in Smokers with Mild Airway Obstruction. COPD: Journal of Chronic Obstructive Pulmonary Disease, 2017, 14, 267-275.	1.6	31
32	Using Cardiopulmonary Exercise Testing to Understand Dyspnea and Exercise Intolerance in Respiratory Disease. Chest, 2022, 161, 1505-1516.	0.8	31
33	Supplemental Oxygen in Interstitial Lung Disease: An Art in Need of Science. Annals of the American Thoracic Society, 2017, 14, 1373-1377.	3.2	30
34	Normative Peak Cardiopulmonary Exercise Test Responses in Canadian Adults AgedÂ≥40 Years. Chest, 2020, 158, 2532-2545.	0.8	29
35	Neurophysiological mechanisms of exertional dyspnoea in fibrotic interstitial lung disease. European Respiratory Journal, 2018, 51, 1701726.	6.7	28
36	Effect of diaphragm fatigue on subsequent exercise tolerance in healthy men and women. Journal of Applied Physiology, 2018, 125, 1987-1996.	2.5	28

#	Article	IF	CITATIONS
37	Quantifying the shape of the maximal expiratory flow–volume curve in mild COPD. Respiratory Physiology and Neurobiology, 2015, 219, 30-35.	1.6	27
38	Differences in respiratory muscle activity during cycling and walking do not influence dyspnea perception in obese patients with COPD. Journal of Applied Physiology, 2014, 117, 1292-1301.	2.5	26
39	Does exercise test modality influence dyspnoea perception in obese patients with COPD?. European Respiratory Journal, 2014, 43, 1621-1630.	6.7	24
40	Effect of age-related ventilatory inefficiency on respiratory sensation during exercise. Respiratory Physiology and Neurobiology, 2015, 205, 129-139.	1.6	23
41	Effects of Age and Sex on Inspiratory Muscle Activation Patterns during Exercise. Medicine and Science in Sports and Exercise, 2018, 50, 1882-1891.	0.4	22
42	Manipulation of mechanical ventilatory constraint during moderate intensity exercise does not influence dyspnoea in healthy older men and women. Journal of Physiology, 2019, 597, 1383-1399.	2.9	22
43	Modelling the effects of age and sex on the resistive and viscoelastic components of the work of breathing during exercise. Experimental Physiology, 2019, 104, 1737-1745.	2.0	20
44	Minimal Important Difference for Physical Activity and Validity of the International Physical Activity Questionnaire in Interstitial Lung Disease. Annals of the American Thoracic Society, 2019, 16, 107-115.	3.2	20
45	Effect of adjunct fluticasone propionate on airway physiology during rest and exercise in COPD. Respiratory Medicine, 2011, 105, 1836-1845.	2.9	19
46	Lung density is not altered following intense normobaric hypoxic interval training in competitive female cyclists. Journal of Applied Physiology, 2007, 103, 875-882.	2.5	16
47	Effect of fluticasone/salmeterol combination on dyspnea and respiratory mechanics in mild-to-moderate COPD. Respiratory Medicine, 2013, 107, 708-716.	2.9	16
48	Qualitative dimensions of exertional dyspnea in adults with cystic fibrosis. Journal of Applied Physiology, 2016, 121, 449-456.	2.5	15
49	The effect of diaphragm fatigue on the multidimensional components of dyspnoea and diaphragm electromyography during exercise in healthy males. Journal of Physiology, 2020, 598, 3223-3237.	2.9	15
50	Toe-in and toe-out walking require different lower limb neuromuscular patterns in people with knee osteoarthritis. Journal of Biomechanics, 2018, 76, 112-118.	2.1	14
51	Exercise Pathophysiology in Interstitial Lung Disease. Clinics in Chest Medicine, 2019, 40, 405-420.	2.1	14
52	Ventilatory and sensory responses to incremental exercise in adults with a Fontan circulation. American Journal of Physiology - Heart and Circulatory Physiology, 2019, 316, H335-H344.	3.2	14
53	Pectoralis muscle area and its association with indices of disease severity in interstitial lung disease. Respiratory Medicine, 2021, 186, 106539.	2.9	14
54	Short-term effects of Lumacaftor/Ivacaftor (Orkambiâ,,¢) on exertional symptoms, exercise performance, and ventilatory responses in adults with cystic fibrosis. Respiratory Research, 2020, 21, 135.	3.6	13

#	Article	IF	CITATIONS
55	Cardiorespiratory and sensory responses to exercise in adults with mild cystic fibrosis. Journal of Applied Physiology, 2015, 119, 1289-1296.	2.5	12
56	Association between exercise-induced change in body composition and change in cardiometabolic risk factors in postmenopausal South Asian women. Applied Physiology, Nutrition and Metabolism, 2016, 41, 931-937.	1.9	12
57	Is parasternal intercostal EMG an accurate surrogate of respiratory neural drive and biomarker of dyspnea during cycle exercise testing?. Respiratory Physiology and Neurobiology, 2017, 242, 40-44.	1.6	12
58	Cardiopulmonary Exercise Testing in Patients With Interstitial Lung Disease. Frontiers in Physiology, 2020, 11, 832.	2.8	12
59	Combined effects of mild-to-moderate obesity and asthma on physiological and sensory responses to exercise. Respiratory Medicine, 2015, 109, 1397-1403.	2.9	11
60	Cardiorespiratory physiology, exertional symptoms, and psychological burden in post-COVID-19 fatigue. Respiratory Physiology and Neurobiology, 2022, 302, 103898.	1.6	11
61	Normative Cardiopulmonary Exercise Test Responses at the Ventilatory Threshold in Canadian Adults 40 to 80 Years of Age. Chest, 2021, 159, 1922-1933.	0.8	10
62	The Impact of Cycling Cadence on Respiratory and Hemodynamic Responses to Exercise. Medicine and Science in Sports and Exercise, 2019, 51, 1727-1735.	0.4	9
63	A multidimensional assessment of dyspnoea in healthy adults during exercise. European Journal of Applied Physiology, 2020, 120, 2533-2545.	2.5	9
64	Physiological mechanisms of dyspnea relief following ivacaftor in cystic fibrosis: A case report. Respiratory Physiology and Neurobiology, 2015, 205, 105-108.	1.6	7
65	Supplemental oxygen and dypsnoea in interstitial lung disease: absence of evidence is not evidence of absence. European Respiratory Review, 2017, 26, 170033.	7.1	7
66	Analysis of maximal expiratory flow-volume curves in adult survivors of preterm birth. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2019, 317, R588-R596.	1.8	7
67	Qualitative dimensions of exertional dyspnea in fibrotic interstitial lung disease. Respiratory Physiology and Neurobiology, 2019, 266, 1-8.	1.6	7
68	Impact of ageing and pregnancy on the minute ventilation/carbon dioxide production response to exercise. European Respiratory Review, 2021, 30, 200225.	7.1	7
69	Cardiorespiratory and sensory responses to exercise in well-controlled asthmatics. Journal of Asthma, 2015, 52, 576-582.	1.7	6
70	Pathophysiological mechanisms of exertional breathlessness in chronic obstructive pulmonary disease and interstitial lung disease. Current Opinion in Supportive and Palliative Care, 2018, 12, 237-245.	1.3	6
71	Nearâ€infrared spectroscopy measures of sternocleidomastoid blood flow during exercise and hyperpnoea. Experimental Physiology, 2020, 105, 2226-2237.	2.0	6
72	Effects of Traffic-Related Air Pollution on Exercise Endurance, Dyspnea, and Cardiorespiratory Responses in Health and COPD. Chest, 2022, 161, 662-675.	0.8	6

#	Article	IF	CITATIONS
73	Sex Differences in Diaphragm Voluntary Activation after Exercise. Medicine and Science in Sports and Exercise, 2022, 54, 1167-1175.	0.4	6
74	Effects of the Elevation Training Mask® 2.0 on dyspnea and respiratory muscle mechanics, electromyography, and fatigue during exhaustive cycling in healthy humans. Journal of Science and Medicine in Sport, 2022, 25, 167-172.	1.3	5
75	Association of BMI with pulmonary function, functional capacity, symptoms, and quality of life in ILD. Respiratory Medicine, 2022, 195, 106792.	2.9	5
76	Contralateral limb foot rotation during unilateral toe-in or toe-out walking in people with knee osteoarthritis. Gait and Posture, 2018, 62, 132-134.	1.4	4
77	Ventilatory responses to constant load exercise following the inhalation of a short-acting ß2-agonist in a laboratory-controlled diesel exhaust exposure study in individuals with exercise-induced bronchoconstriction. Environment International, 2021, 146, 106182.	10.0	4
78	Can an 86-year-old woman with advanced lung disease be a world class athlete?. Respiratory Physiology and Neurobiology, 2012, 181, 162-166.	1.6	3
79	Supplemental oxygen for the management of dyspnea in interstitial lung disease. Current Opinion in Supportive and Palliative Care, 2019, 13, 174-178.	1.3	3
80	Reliability of diaphragm voluntary activation measurements in healthy adults. Applied Physiology, Nutrition and Metabolism, 2021, 46, 247-256.	1.9	3
81	Phenotyping Cardiopulmonary Exercise Limitations in Chronic Obstructive Pulmonary Disease. Frontiers in Physiology, 2022, 13, 816586.	2.8	3
82	Self-initiated lifestyle interventions lead to potential insight into an effective, alternative, non-surgical therapy for mitochondrial disease associated multiple symmetric lipomatosis. Mitochondrion, 2020, 52, 183-189.	3.4	2
83	Characterization and determinants of sleep measured by self-report and wrist actigraphy in patients with interstitial lung disease. Canadian Journal of Respiratory, Critical Care, and Sleep Medicine, 2022, 6, 88-96.	0.5	1
84	Ketogenic diet for mitochondrial disease: potential role in treating the Multiple Symmetric Lipomatosis phenotype associated with the common MT-TK genetic mutation. Orphanet Journal of Rare Diseases, 2022, 17, 12.	2.7	1
85	Costs of oxygen therapy for interstitial lung disease and chronic obstructive pulmonary disease: A retrospective study from a universal healthcare system. Canadian Journal of Respiratory, Critical Care, and Sleep Medicine, 2022, 6, 351-358.	0.5	1
86	Reply to Topalovic and Janssens. Respiratory Physiology and Neurobiology, 2016, 227, 68.	1.6	0
87	Physical activity measurement accuracy in advanced chronic lung disease. Canadian Journal of Respiratory, Critical Care, and Sleep Medicine, 2018, 2, 9-18.	0.5	0
88	Reply to: Assessment of â€~neural respiratory drive' from the parasternal intercostal muscles. Respiratory Physiology and Neurobiology, 2019, 259, 173-175.	1.6	0
89	Reply to Beltrami. Experimental Physiology, 2021, 106, 791-792.	2.0	0
90	Case Studies in Physiology: Cardiopulmonary exercise testing and inspiratory muscle training in a 59-year-old, 4 years after an extrapleural pneumonectomy. Journal of Applied Physiology, 2021, 131, 1701-1707.	2.5	0

#	Article	IF	CITATIONS
91	Patterns of cardiopulmonary response to exercise in fibrotic ILD. , 0, , 128-145.		0