
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4496168/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Identification of four novel QTL linked to the metabolic syndrome in the Berlin Fat Mouse. International Journal of Obesity, 2022, 46, 307-315.	3.4	8
2	Transmission distortion and genetic incompatibilities between alleles in a multigenerational mouse advanced intercross line. Genetics, 2022, 220, .	2.9	5
3	Y-Chromosomal Insights into Breeding History and Sire Line Genealogies of Arabian Horses. Genes, 2022, 13, 229.	2.4	12
4	Validation of somatic cell score-associated SNPs from Holstein cattle in Sudanese Butana and Butana × Holstein crossbred cattle. Tropical Animal Health and Production, 2022, 54, 50.	1.4	1
5	Effects of DGAT1 on milk performance in Sudanese Butana × Holstein crossbred cattle. Tropical Animal Health and Production, 2022, 54, 142.	1.4	3
6	A deletion containing a CTCF-element in intron 8 of the Bbs7 gene is partially responsible for juvenile obesity in the Berlin Fat Mouse. Mammalian Genome, 2022, 33, 465-470.	2.2	4
7	QTL-mapping in the obese Berlin Fat Mouse identifies additional candidate genes for obesity and fatty liver disease. Scientific Reports, 2022, 12, .	3.3	3
8	Capture Sequencing to Explore and Map Rare Casein Variants in Goats. Frontiers in Genetics, 2021, 12, 620253.	2.3	5
9	Sex-specific genetic architecture in response to American and ketogenic diets. International Journal of Obesity, 2021, 45, 1284-1297.	3.4	10
10	Genomic Loci Affecting Milk Production in German Black Pied Cattle (DSN). Frontiers in Genetics, 2021, 12, 640039.	2.3	14
11	Genome-Wide Association Study Using Whole-Genome Sequence Data for Fertility, Health Indicator, and Endoparasite Infection Traits in German Black Pied Cattle. Genes, 2021, 12, 1163.	2.4	10
12	Design and performance of a bovine 200 k SNP chip developed for endangered German Black Pied cattle (DSN). BMC Genomics, 2021, 22, 905.	2.8	9
13	Chicken Immune Cell Assay to Model Adaptive Immune Responses In Vitro. Animals, 2021, 11, 3600.	2.3	3
14	Whey protein polymorphisms in Sudanese goat breeds. Tropical Animal Health and Production, 2020, 52, 1211-1222.	1.4	3
15	Content and Performance of the MiniMUGA Genotyping Array: A New Tool To Improve Rigor and Reproducibility in Mouse Research. Genetics, 2020, 216, 905-930.	2.9	58
16	Effect of feeding different levels of lignocellulose on performance, nutrient digestibility, excreta dry matter, and intestinal microbiota in slow growing broilers. Poultry Science, 2020, 99, 5018-5026.	3.4	12
17	A genome-wide association study for clinical mastitis in the dual-purpose German Black Pied cattle breed. Journal of Dairy Science, 2020, 103, 10289-10298.	3.4	14
18	ldentification of Novel Potential Type 2 Diabetes Genes Mediating β-Cell Loss and Hyperglycemia Using Positional Cloning. Frontiers in Genetics, 2020, 11, 567191.	2.3	5

#	Article	IF	CITATIONS
19	Finding the Optimal Imputation Strategy for Small Cattle Populations. Frontiers in Genetics, 2019, 10, 52.	2.3	35
20	Genome-wide associations and functional gene analyses for endoparasite resistance in an endangered population of native German Black Pied cattle. BMC Genomics, 2019, 20, 277.	2.8	17
21	DNA Sequence Variants and Protein Haplotypes of Casein Genes in German Black Pied Cattle (DSN). Frontiers in Genetics, 2019, 10, 1129.	2.3	19
22	Validating genomeâ€wide associated signals for clinical mastitis in German Holstein cattle. Animal Genetics, 2018, 49, 82-85.	1.7	11
23	High dosage of zinc modulates T-cells in a time-dependent manner within porcine gut-associated lymphatic tissue. British Journal of Nutrition, 2018, 120, 1349-1358.	2.3	8
24	Effect of adipocyte-derived IGF-I on adipose tissue mass and glucose metabolism in the Berlin Fat Mouse. Growth Factors, 2018, 36, 78-88.	1.7	8
25	Reducing the interval of a growth <scp>QTL</scp> on chromosome 4 in laying hens. Animal Genetics, 2018, 49, 467-471.	1.7	5
26	Genomeâ€wide association study of body morphological traits in Sudanese goats. Animal Genetics, 2018, 49, 478-482.	1.7	11
27	Genetic diversity of Nubian ibex in comparison to other ibex and domesticated goat species. European Journal of Wildlife Research, 2018, 64, 1.	1.4	3
28	Invited review: Genetic and genomic mouse models for livestock research. Archives Animal Breeding, 2018, 61, 87-98.	1.4	2
29	Fine mapping of a distal chromosome 4 <scp>QTL</scp> affecting growth and muscle mass in a chicken advanced intercross line. Animal Genetics, 2017, 48, 295-302.	1.7	19
30	Genetic diversity of Syrian Arabian horses. Animal Genetics, 2017, 48, 486-489.	1.7	13
31	Milk protein polymorphisms and casein haplotypes in Butana cattle. Journal of Applied Genetics, 2017, 58, 261-271.	1.9	17
32	Diversity of mitochondrial DNA in three Arabian horse strains. Journal of Applied Genetics, 2017, 58, 273-276.	1.9	10
33	Systems Genetics of Obesity. Methods in Molecular Biology, 2017, 1488, 481-497.	0.9	1
34	Whole genome population genetics analysis of Sudanese goats identifies regions harboring genes associated with major traits. BMC Genetics, 2017, 18, 92.	2.7	42
35	P5035 Fine mapping of a distal chromosome 4 QTL affecting growth and muscle mass in a chicken advanced intercross line. Journal of Animal Science, 2016, 94, 132-133.	0.5	1
36	Feeding a high dosage of zinc oxide affects suppressor of cytokine gene expression in Salmonella Typhimurium infected piglets. Veterinary Immunology and Immunopathology, 2016, 178, 10-13.	1.2	10

#	Article	IF	CITATIONS
37	Fine mapping a major obesity locus (jObes1) using a Berlin Fat Mouse × B6N advanced intercross population. International Journal of Obesity, 2016, 40, 1784-1788.	3.4	17
38	Green tea reduces body fat via upregulation of neprilysin. International Journal of Obesity, 2016, 40, 1850-1855.	3.4	14
39	Heritability of metabolic response to the intravenous glucose tolerance test in German Holstein Friesian bulls. Journal of Dairy Science, 2016, 99, 7240-7246.	3.4	8
40	High Variability of Insulin Sensitivity in Closely Related Obese Mouse Inbred Strains. Experimental and Clinical Endocrinology and Diabetes, 2016, 124, 519-528.	1.2	7
41	Feeding of Enterococcus faecium NCIMB 10415 Leads to Intestinal miRNA-423-5p-Induced Regulation of Immune-Relevant Genes. Applied and Environmental Microbiology, 2016, 82, 2263-2269.	3.1	27
42	Correlation Trait Loci (CTL) mapping: phenotype network inference subject to genotype. Journal of Open Source Software, 2016, 1, 87.	4.6	3
43	The direction of cross affects obesity after puberty in male but not female offspring. BMC Genomics, 2015, 16, 904.	2.8	6
44	Quantitative trait loci segregating in crosses between New Hampshire and White Leghorn chicken lines: IV. Growth performance. Animal Genetics, 2015, 46, 441-446.	1.7	27
45	The Zinc Concentration in the Diet and the Length of the Feeding Period Affect the Methylation Status of the ZIP4 Zinc Transporter Gene in Piglets. PLoS ONE, 2015, 10, e0143098.	2.5	12
46	Go with the flowââ,¬â€biology and genetics of the lactation cycle. Frontiers in Genetics, 2015, 6, 118.	2.3	81
47	A comprehensive linkage map and QTL map for carcass traits in a cross between Giant Grey and New Zealand White rabbits. BMC Genetics, 2015, 16, 16.	2.7	9
48	Crossâ€ŧalk Between Host, Microbiome and Probiotics: A Systems Biology Approach for Analyzing the Effects of Probiotic <i>Enterococcus faecium</i> NCIMB 10415 in Piglets. Molecular Informatics, 2014, 33, 171-182.	2.5	4
49	A new single nucleotide polymorphism in the rabbit (<i>Oryctolagus) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf Animal Genetics, 2014, 45, 596-599.</i>	f 50 267 To 1.7	d (cuniculus< 17
50	Single nucleotide polymorphism and haplotype effects associated with somatic cell score in German Holstein cattle. Genetics Selection Evolution, 2014, 46, 35.	3.0	43
51	Changes in metabolite profiles caused by genetically determined obesity in mice. Metabolomics, 2014, 10, 461-472.	3.0	20
52	Characterization of CD4+ subpopulations and CD25+ cells in ileal lymphatic tissue of weaned piglets infected with Salmonella Typhimurium with or without Enterococus faecium feeding. Veterinary Immunology and Immunopathology, 2014, 158, 143-155.	1.2	12
53	Enterococcus faecium NCIMB 10415 supplementation affects intestinal immune-associated gene expression in post-weaning piglets. Veterinary Immunology and Immunopathology, 2014, 157, 65-77.	1.2	35
54	Short communication: Validation of somatic cell score–associated loci identified in a genome-wide association study in German Holstein cattle. Journal of Dairy Science, 2014, 97, 2481-2486.	3.4	20

#	Article	IF	CITATIONS
55	Quantitative trait loci segregating in crosses between <scp>N</scp> ew <scp>H</scp> ampshire and <scp>W</scp> hite <scp>L</scp> eghorn chicken lines: III. Fat deposition and intramuscular fat content. Animal Genetics, 2013, 44, 62-68.	1.7	27
56	ATR-FTIR spectroscopy reveals genomic loci regulating the tissue response in high fat diet fed BXD recombinant inbred mouse strains. BMC Genomics, 2013, 14, 386.	2.8	47
57	Effect of the myostatin locus on muscle mass and intramuscular fat content in a cross between mouse lines selected for hypermuscularity. BMC Genomics, 2013, 14, 16.	2.8	12
58	Gene test to elucidate the ETEC F4ab/F4ac receptor status in pigs. Veterinary Microbiology, 2013, 162, 293-295.	1.9	16
59	New fast and cost-effective gene test to get the ETEC F18 receptor status in pigs. Veterinary Microbiology, 2013, 163, 392-394.	1.9	17
60	Relationship between obesity phenotypes and genetic determinants in a mouse model for juvenile obesity. Physiological Genomics, 2013, 45, 817-826.	2.3	2
61	No Protective Effects of High-Dosage Dietary Zinc Oxide on Weaned Pigs Infected with Salmonella enterica Serovar Typhimurium DT104. Applied and Environmental Microbiology, 2013, 79, 2914-2921.	3.1	19
62	The age of attaining highest body weight correlates with lifespan in a genetically obese mouse model. Nutrition and Diabetes, 2013, 3, e62-e62.	3.2	10
63	Equivalent Indels – Ambiguous Functional Classes and Redundancy in Databases. PLoS ONE, 2013, 8, e62803.	2.5	10
64	Impact of Variation at the FTO Locus on Milk Fat Yield in Holstein Dairy Cattle. PLoS ONE, 2013, 8, e63406.	2.5	23
65	No Beneficial Effects Evident for Enterococcus faecium NCIMB 10415 in Weaned Pigs Infected with Salmonella enterica Serovar Typhimurium DT104. Applied and Environmental Microbiology, 2012, 78, 4816-4825.	3.1	34
66	Feeding of the probiotic bacterium Enterococcus faecium NCIMB 10415 differentially affects shedding of enteric viruses in pigs. Veterinary Research, 2012, 43, 58.	3.0	57
67	Genomic imprinting and genetic effects on muscle traits in mice. BMC Genomics, 2012, 13, 408.	2.8	9
68	Quantitative trait loci segregating in crosses between New Hampshire and White Leghorn chicken lines: I. egg production traits. Animal Genetics, 2012, 43, 183-189.	1.7	29
69	Genomeâ€wide associations for investigating timeâ€dependent genetic effects for milk production traits in dairy cattle. Animal Genetics, 2012, 43, 375-382.	1.7	36
70	Quantitative trait loci segregating in crosses between <scp>N</scp> ew <scp>H</scp> ampshire and <scp>W</scp> hite <scp>L</scp> eghorn chicken lines: <scp>II</scp> . Muscle weight and carcass composition. Animal Genetics, 2012, 43, 739-745.	1.7	25
71	Positional Cloning of Diabetes Genes. Methods in Molecular Biology, 2012, 933, 275-289.	0.9	2
72	Genetic determinants for intramuscular fat content and water-holding capacity in mice selected for high muscle mass. Mammalian Genome, 2011, 22, 530-543.	2.2	32

#	Article	IF	CITATIONS
73	The F279Y polymorphism of the GHR gene and its relation to milk production and somatic cell score in German Holstein dairy cattle. Journal of Applied Genetics, 2011, 52, 459-465.	1.9	32
74	IGF-I contributes to glucose homeostasis in the Berlin Fat Mouse Inbred line. Growth Factors, 2011, 29, 298-309.	1.7	6
75	BDNF Contributes to the Genetic Variance of Milk Fat Yield in German Holstein Cattle. Frontiers in Genetics, 2011, 2, 16.	2.3	13
76	Features of the Metabolic Syndrome in the Berlin Fat Mouse as a Model for Human Obesity. Obesity Facts, 2011, 4, 2-2.	3.4	15
77	High-fat diet leads to a decreased methylation of theMc4r gene in the obese BFMI and the lean B6 mouse lines. Journal of Applied Genetics, 2010, 51, 193-197.	1.9	98
78	Tracking chromosomal positions of oligomers - a case study with Illumina's BovineSNP50 beadchip. BMC Genomics, 2010, 11, 80.	2.8	8
79	A unique genetic defect on chromosome 3 is responsible for juvenile obesity in the Berlin Fat Mouse. International Journal of Obesity, 2010, 34, 1706-1714.	3.4	24
80	High-fat diet leads to tissue-specific changes reflecting risk factors for diseases in DBA/2J mice. Physiological Genomics, 2010, 42, 55-66.	2.3	41
81	Genetic and diet effects on Ppar-α and Ppar-γ signaling pathways in the Berlin Fat Mouse Inbred line with genetic predisposition for obesity. Lipids in Health and Disease, 2010, 9, 99.	3.0	12
82	Phenotypic characterization of chicken inbred lines that differ extremely in growth, body composition and egg production traits. Archives Animal Breeding, 2010, 53, 337-349.	1.4	11
83	A New Standard Genetic Map for the Laboratory Mouse. Genetics, 2009, 182, 1335-1344.	2.9	202
84	RandoMate: a program for the generation of random mating schemes for small laboratory animals. Mammalian Genome, 2009, 20, 321-325.	2.2	19
85	High Energy Digestion Efficiency and Altered Lipid Metabolism Contribute to Obesity in BFMI Mice. Obesity, 2009, 17, 1988-1993.	3.0	19
86	Genetic factors contributing to obesity and body weight can act through mechanisms affecting muscle weight, fat weight, or both. Physiological Genomics, 2009, 36, 114-126.	2.3	21
87	Multiple-trait QTL mapping for body and organ weights in a cross between NMRI8 and DBA/2 mice. Genetical Research, 2007, 89, 47-59.	0.9	17
88	Fine Mapping of Mouse QTLs for Fatness Using SNP Data. OMICS A Journal of Integrative Biology, 2007, 11, 341-350.	2.0	3
89	Genetic control of lipids in the mouse cross DU6i × DBA/2. Mammalian Genome, 2007, 18, 757-766.	2.2	6
90	Differentially expressed genes in adipose tissues of high body weight-selected (obese) and unselected (lean) mouse lines. Journal of Applied Genetics, 2007, 48, 133-143.	1.9	11

#	Article	IF	CITATIONS
91	Genetic, sex, and diet effects on body weight and obesity in the Berlin Fat Mouse Inbred lines. Physiological Genomics, 2006, 27, 264-270.	2.3	33
92	Chromosome-Wise Dissection of the Genome of the Extremely Big Mouse Line DU6i. Genetics, 2006, 172, 401-410.	2.9	17
93	Simultaneous mapping of epistatic QTL in DU6i × DBA/2 mice. Mammalian Genome, 2005, 16, 481-494.	2.2	36
94	INBREEDING AND CROSSBREEDING. , 2005, , 57-83.		2
95	QTLs for pre- and postweaning body weight and body composition in selected mice. Mammalian Genome, 2004, 15, 593-609.	2.2	33
96	Combined analysis of data from two granddaughter designs: A simple strategy for QTL confirmation and increasing experimental power in dairy cattle. Genetics Selection Evolution, 2003, 35, 319-38.	3.0	71
97	Quantitative Trait Loci Mapping of Functional Traits in the German Holstein Cattle Population. Journal of Dairy Science, 2003, 86, 360-368.	3.4	127
98	Using mouse models to dissect the genetics of obesity. Trends in Genetics, 2002, 18, 367-376.	6.7	152
99	Mapping of the bovine blood group systems J, N′, R′, and Z show evidence for oligo-genetic inheritance. Animal Genetics, 2002, 33, 107-117.	1.7	4
100	Genome-wide search for loci controlling serum IGF binding protein levels of mice. FASEB Journal, 2001, 15, 978-987.	0.5	14
101	Single QTL Effects, Epistasis, and Pleiotropy Account for Two-thirds of the Phenotypic F2 Variance of Growth and Obesity in DU6i x DBA/2 Mice. Genome Research, 2000, 10, 1941-1957.	5.5	123
102	Fat storage capacity in growth-selected and control mouse lines is associated with line-specific gene expression and plasma hormone levels. International Journal of Obesity, 1999, 23, 586-594.	3.4	21
103	Quantitative Trait Loci Affecting Body Weight and Fatness From a Mouse Line Selected for Extreme High Growth. Genetics, 1998, 150, 369-381.	2.9	113