Ming-Gang Xia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4495784/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Moiré-induced band-gap opening in one-dimensional superlattices of carbon nanotubes on hexagonal boron nitride. Physical Review B, 2022, 105, .	1.1	1
2	Effect of hydrogen and oxygen plasma on the photoelectronic current and photo-response time of SnS ₂ flakes. Journal Physics D: Applied Physics, 2021, 54, 255102.	1.3	4
3	Vacancy effect on the structure and diffusion of a Li adatom on the 2D Janus MoSSe monolayer. Computational Materials Science, 2021, 198, 110687.	1.4	2
4	Interfaces determine the nucleation and growth of large NbS ₂ single crystals. CrystEngComm, 2021, 23, 1312-1320.	1.3	5
5	Borophosphene as a promising Dirac anode with large capacity and high-rate capability for sodium-ion batteries. Physical Chemistry Chemical Physics, 2020, 22, 20851-20857.	1.3	18
6	Local nanostructures enhanced the thermoelectric performance of n-type PbTe. Journal of Materials Chemistry A, 2019, 7, 18458-18467.	5.2	53
7	Role of rough substrate on the growth of large single-crystal MoS2 by chemical vapor deposition. Applied Surface Science, 2019, 476, 1008-1015.	3.1	30
8	The adhesion energy measured by a stress accumulation-peeling mechanism in the exfoliation of graphite. Physical Chemistry Chemical Physics, 2019, 21, 1217-1223.	1.3	10
9	Optimization of flexible substrate by gradient elastic modulus design for performance improvement of flexible electronic devices. Applied Physics Express, 2018, 11, 051601.	1.1	1
10	Bandgap engineering of Janus MoSSe monolayer implemented by Se vacancy. Computational Materials Science, 2018, 152, 20-27.	1.4	46
11	Flexible modulation of electronic and magnetic properties of zigzag H-MoS ₂ nanoribbons by crack defects. Journal of Physics Condensed Matter, 2018, 30, 285302.	0.7	3
12	Width-dependent structural stability and magnetic properties ofÂmonolayer zigzag MoS ₂ nanoribbons. Modern Physics Letters B, 2017, 31, 1750017.	1.0	12
13	Single crystal monolayer MoS2 triangles with wafer-scale spatial uniformity by MoO3 pre-deposited chemical vapor deposition. Journal of Crystal Growth, 2017, 480, 6-12.	0.7	10
14	A method to calculate thermal conductivity of a nonperiodic system, bamboo Si1â^'xGex nanowire with axially degraded components. European Physical Journal B, 2017, 90, 1.	0.6	1
15	Effect of Substrate symmetry on the dendrite morphology of MoS2 Film synthesized by CVD. Scientific Reports, 2017, 7, 15166.	1.6	24
16	Phonon stiffen and soften at zigzag- and armchair-dominated edges of exfoliated bilayer graphene ribbon presented by Raman spectra. EPJ Applied Physics, 2017, 80, 30302.	0.3	0
17	Enhanced synthesis of Sn nanowires with aid of Se atom via physical vapor transport. Journal of Crystal Growth, 2015, 420, 42-46.	0.7	5
18	Gallium ion implantation greatly reduces thermal conductivity and enhances electronic one of ZnO nanowires. AIP Advances, 2014, 4, .	0.6	8

MING-GANG XIA

#	Article	IF	CITATIONS
19	Anomalous junctions characterized by Raman spectroscopy in Si <i>x</i> Gelâ^' <i>x</i> nanowires with axially degraded components. Applied Physics Letters, 2014, 105, .	1.5	5
20	Synthesis and Diameter-dependent Thermal Conductivity of InAs Nanowires. Nano-Micro Letters, 2014, 6, 301-306.	14.4	25
21	Extremely stretchable all-carbon-nanotube transistor on flexible and transparent substrates. Applied Physics Letters, 2014, 105, .	1.5	39
22	Localized vibrational, edges and breathing modes of graphene nanoribbons with topological line defects. European Physical Journal B, 2013, 86, 1.	0.6	1
23	Efficient ultraviolet emission of ZnS nanospheres: Co doping enhancement. Materials Letters, 2013, 100, 237-240.	1.3	24
24	Coupling effect of La doping and porphyrin sensitization on photocatalytic activity of nanocrystalline TiO2. Materials Letters, 2013, 108, 37-40.	1.3	32
25	Raman spectra of bilayer graphene covered with Poly(methyl methacrylate) thin film. AIP Advances, 2012, 2, .	0.6	27
26	Size-controllable synthesis and enhanced photocatalytic activity of porous ZnS nanospheres. Materials Letters, 2012, 83, 104-107.	1.3	46
27	Specific heat of graphene nanoribbons. Physics Letters, Section A: General, Atomic and Solid State Physics, 2011, 375, 3726-3730.	0.9	17
28	Modulation of specific heat in graphene by uniaxial strain. European Physical Journal B, 2011, 84, 385-390.	0.6	21
29	Heat and Electronic Coupling Transport in Strained Graphene Nanoribbons. Advanced Science Letters, 2011, 4, 3658-3661.	0.2	Ο
30	Effect of optical phonons scattering on electronic current in metallic carbon nanotubes. Physics Letters, Section A: General, Atomic and Solid State Physics, 2009, 373, 385-390.	0.9	4
31	Long-wavelength optical phonons in single-walled boron nitride nanotubes. Physica B: Condensed Matter, 2008, 403, 4196-4201.	1.3	3
32	Single-Walled Carbon Nanotubes Modified with Pd Nanoparticles:  Unique Building Blocks for High-Performance, Flexible Hydrogen Sensors. Journal of Physical Chemistry C, 2008, 112, 1250-1259.	1.5	87
33	Gate capacitance coupling of singled-walled carbon nanotube thin-film transistors. Applied Physics Letters, 2007, 90, 023516.	1.5	159
34	Transparent flexible organic thin-film transistors that use printed single-walled carbon nanotube electrodes. Applied Physics Letters, 2006, 88, 113511.	1.5	138
35	Optimum diameter of single-walled carbon nanotubes in carbon nanotube ropes. Physical Review B, 2004, 70, .	1.1	3
36	General equilibrium shape equations of polymer chains. Physical Review E, 2004, 70, 051902.	0.8	19

MING-GANG XIA

#	Article	IF	CITATIONS
37	THE TRANSPORT PROPERTIES OF NANOTUBES AND ITS CURVATURE EFFECTS. Modern Physics Letters B, 2004, 18, 817-824.	1.0	4
38	Assignment of the chiralities of double-walled carbon nanotubes using two radial breathing modes. Physical Review B, 2004, 70, .	1.1	10
39	Optimum diameter of small single-wall carbon tori. Physics Letters, Section A: General, Atomic and Solid State Physics, 2004, 331, 238-243.	0.9	10
40	A continuum model for calculating the phonon density of states of single-walled carbon nanotubes. Physica B: Condensed Matter, 2004, 344, 66-72.	1.3	9
41	Vibrational spectra of double-wall carbon nanotubes. Physical Review B, 2004, 69, .	1.1	15
42	Specific heat of single-walled carbon nanotubes. Physical Review B, 2003, 68, .	1.1	51
43	Ring formation of single-walled carbon nanotubes:â€,â€,Competition between conformation energy and entropy. Physical Review B, 2003, 68, .	1.1	23
44	Helicity energy of a straight single-wall carbon nanotube. Physical Review B, 2000, 61, 12693-12696.	1.1	14