Victoria Flexer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4495487/publications.pdf

Version: 2024-02-01

56 papers

2,551 citations

218592 26 h-index 50 g-index

58 all docs 58 docs citations 58 times ranked 2520 citing authors

#	Article	IF	CITATIONS
1	Lithium recovery from brines: A vital raw material for green energies with a potential environmental impact in its mining and processing. Science of the Total Environment, 2018, 639, 1188-1204.	3.9	318
2	High Acetic Acid Production Rate Obtained by Microbial Electrosynthesis from Carbon Dioxide. Environmental Science & Environme	4.6	241
3	A novel carbon nanotube modified scaffold as an efficient biocathode material for improved microbial electrosynthesis. Journal of Materials Chemistry A, 2014, 2, 13093-13102.	5.2	236
4	Bringing High-Rate, CO ₂ -Based Microbial Electrosynthesis Closer to Practical Implementation through Improved Electrode Design and Operating Conditions. Environmental Science & Environment	4.6	141
5	The nanostructure of three-dimensional scaffolds enhances the current density of microbial bioelectrochemical systems. Energy and Environmental Science, 2013, 6, 1291.	15.6	132
6	Biologically Induced Hydrogen Production Drives High Rate/High Efficiency Microbial Electrosynthesis of Acetate from Carbon Dioxide. ChemElectroChem, 2016, 3, 581-591.	1.7	122
7	Wired-Enzyme Coreâ^'Shell Au Nanoparticle Biosensor. Journal of the American Chemical Society, 2008, 130, 12690-12697.	6.6	116
8	Efficient Direct Electron Transfer of PQQ-glucose Dehydrogenase on Carbon Cryogel Electrodes at Neutral pH. Analytical Chemistry, 2011, 83, 5721-5727.	3.2	92
9	Porous mediator-free enzyme carbonaceous electrodes obtained through Integrative Chemistry for biofuel cells. Energy and Environmental Science, 2011, 4, 2097-2106.	15.6	83
10	Purposely Designed Hierarchical Porous Electrodes for High Rate Microbial Electrosynthesis of Acetate from Carbon Dioxide. Accounts of Chemical Research, 2020, 53, 311-321.	7.6	69
11	Designing highly efficient enzyme-based carbonaceous foams electrodes for biofuel cells. Energy and Environmental Science, 2010, 3, 1302.	15.6	68
12	Membrane electrolysis for the removal of Mg2+ and Ca2+ from lithium rich brines. Water Research, 2019, 154, 117-124.	5.3	63
13	From Dynamic Measurements of Photosynthesis in a Living Plant to Sunlight Transformation into Electricity. Analytical Chemistry, 2010, 82, 1444-1449.	3.2	61
14	Structure and Thickness Dependence of "Molecular Wiring―in Nanostructured Enzyme Multilayers. Analytical Chemistry, 2006, 78, 399-407.	3.2	57
15	Removal of the X-ray Contrast Media Diatrizoate by Electrochemical Reduction and Oxidation. Environmental Science & Environmen	4.6	45
16	Wired Pyrroloquinoline Quinone Soluble Glucose Dehydrogenase Enzyme Electrodes Operating at Unprecedented Low Redox Potential. Analytical Chemistry, 2014, 86, 2465-2473.	3.2	45
17	Oxygen cathode based on a layer-by-layer self-assembled laccase and osmium redox mediator. Electrochimica Acta, 2009, 54, 1970-1977.	2.6	44
18	A novel three-dimensional macrocellular carbonaceous biofuel cell. Physical Chemistry Chemical Physics, 2013, 15, 6437.	1.3	40

#	Article	IF	Citations
19	Extracting kinetic parameters for homogeneous [Os(bpy)2ClPyCOOH]+ mediated enzyme reactions from cyclic voltammetry and simulations. Bioelectrochemistry, 2008, 74, 201-209.	2.4	36
20	Designing a highly active soluble PQQ–glucose dehydrogenase for efficient glucose biosensors and biofuel cells. Biochemical and Biophysical Research Communications, 2010, 402, 750-754.	1.0	36
21	Plasma treatment of electrodes significantly enhances the development of anodic electrochemically active biofilms. Electrochimica Acta, 2013, 108, 566-574.	2.6	35
22	Sustainable Electrochemical Extraction of Lithium from Natural Brine for Renewable Energy Storage. Journal of the Electrochemical Society, 2018, 165, A2294-A2302.	1.3	35
23	Effects of ceria nanoparticle concentrations on the morphology and corrosion resistance of cerium–silane hybrid coatings on electro-galvanized steel substrates. Materials Chemistry and Physics, 2014, 145, 450-460.	2.0	34
24	Relaxation and Simplex mathematical algorithms applied to the study of steady-state electrochemical responses of immobilized enzyme biosensors: Comparison with experiments. Journal of Electroanalytical Chemistry, 2008, 616, 87-98.	1.9	31
25	Effect of Degree of Glycosylation on Charge of Glucose Oxidase and Redox Hydrogel Catalytic Efficiency. ChemPhysChem, 2010, 11, 2795-2797.	1.0	28
26	Reviewâ€"Non-Carbonaceous Materials as Cathodes for Lithium-Sulfur Batteries. Journal of the Electrochemical Society, 2018, 165, A6119-A6135.	1.3	28
27	The application of the relaxation and simplex method to the analysis of data for glucose electrodes based on glucose oxidase immobilised in an osmium redox polymer. Journal of Electroanalytical Chemistry, 2010, 646, 24-32.	1.9	26
28	Potential water recovery during lithium mining from high salinity brines. Science of the Total Environment, 2020, 720, 137523.	3.9	26
29	Lithium carbonate recovery from brines using membrane electrolysis. Journal of Membrane Science, 2020, 615, 118416.	4.1	25
30	Effects of the nature and charge of the topmost layer in layer by layer self assembled amperometric enzyme electrodes. Physical Chemistry Chemical Physics, 2010, 12, 10033.	1.3	24
31	Redox molecule based SERS sensors. Physical Chemistry Chemical Physics, 2009, 11, 7412.	1.3	21
32	Microcellular Electrode Material for Microbial Bioelectrochemical Systems Synthesized by Hydrothermal Carbonization of Biomass Derived Precursors. ACS Sustainable Chemistry and Engineering, 2016, 4, 2508-2516.	3.2	20
33	Selfâ€healing silane coatings of cerium salt activated nanoparticles. Materials and Corrosion - Werkstoffe Und Korrosion, 2016, 67, 693-701.	0.8	17
34	Membrane electrolysis for the removal of Na+ from brines for the subsequent recovery of lithium salts. Separation and Purification Technology, 2020, 252, 117410.	3.9	16
35	Performance of a double-slope solar still for the concentration of lithium rich brines with concomitant fresh water recovery. Science of the Total Environment, 2021, 791, 148192.	3.9	15
36	Boron extraction using selective ion exchange resins enables effective magnesium recovery from lithium rich brines with minimal lithium loss. Separation and Purification Technology, 2021, 275, 119177.	3.9	15

3

#	Article	IF	CITATIONS
37	A First Assessment on the Scale-Up Possibilities of Different Electrochemical Techniques for Lithium Isotopic Enrichment. Industrial & Engineering Chemistry Research, 2018, 57, 11399-11413.	1.8	14
38	Electrochemical Flow Reactor for Selective Extraction of Lithium Chloride from Natural Brines. Journal of the Electrochemical Society, 2020, 167, 120522.	1.3	14
39	Assessment of copper corrosion from frameless copper IUDs after long-term in utero residence. Contraception, 2014, 90, 454-459.	0.8	9
40	High nitrogen content carbons: Morphological and chemical changes with synthesis temperature and application in lithium–sulfur batteries. Electrochimica Acta, 2020, 359, 136942.	2.6	9
41	Lowâ€Temperature Synthesis of a Sulfurâ€Polyacrylonitrile Composite Cathode for Lithiumâ€Sulfur Batteries. ChemistrySelect, 2020, 5, 5465-5472.	0.7	8
42	Sustainable Electrochemical Extraction of Lithium from Natural Brine: Part II. Flow Reactor. Journal of the Electrochemical Society, 2021, 168, 020518.	1.3	7
43	Effect of temperature, current density and mass transport during the electrolytic removal of magnesium ions from lithium rich brines. Desalination, 2022, 529, 115652.	4.0	7
44	A New Strategy for Corrosion Inhibition Coatings for Lead Heritage Metal Objects. Electrochimica Acta, 2015, 179, 441-451.	2.6	6
45	A strategy to avoid solid formation within the reactor during magnesium and calcium electrolytic removal from lithium-rich brines. Journal of Solid State Electrochemistry, 2022, 26, 1981-1994.	1.2	4
46	Is it possible to recover lithium compounds from complex brines employing electromembrane processes exclusively?. Current Opinion in Electrochemistry, 2022, 35, 101087.	2.5	4
47	CO ₂ Emission Reduction by Integrating Concentrating Solar Power into Lithium Mining. Energy & Energy	2.5	3
48	SR-XRD in situ monitoring of copper-IUD corrosion in simulated uterine fluid using a portable spectroelectrochemical cell. Bioelectrochemistry, 2016, 110, 41-45.	2.4	2
49	Fundamentals of Enzymatic Electrochemical Systems. , 2017, , 3-50.		2
50	Synergistic Combination of TiO ₂ and S-PAN for Li-S Batteries with Long-Term Cyclability at High C-Rates. Journal of the Electrochemical Society, 2021, 168, 120536.	1.3	2
51	Architectures of Enzyme Electrodes Using Redox Mediators. , 2017, , 173-213.		1
52	One-pot synthesis of hierarchical porous carbons with extended ultramicropores: New prospective materials for supercapacitors. Carbon Trends, 2021, 5, 100110.	1.4	1
53	Nanocarbon-Based Enzymatic Electrodes. , 2017, , 341-379.		1
54	Highly Efficient Porous Enzyme-based Carbonaceous Electrodes Obtained Through Integrative Chemistry. Materials Research Society Symposia Proceedings, 2013, 1491, 64.	0.1	0

#	Article	IF	CITATIONS
55	Integrative Chemistry-Based Generation of Novel Three Dimensional Macrocellular Carbonaceous Biofuel Cell. Materials Research Society Symposia Proceedings, 2014, 1641, 1.	0.1	O
56	Water Recovery Via Solar Evaporation Systems Coupled to Lithium Mining from Brines. , 2019, , .		0