
## Navid Kashaninejad

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4495436/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                   | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Spheroids-on-a-chip: Recent advances and design considerations in microfluidic platforms for spheroid formation and culture. Sensors and Actuators B: Chemical, 2018, 263, 151-176.       | 4.0  | 175       |
| 2  | Design, fabrication and characterization of drug delivery systems based on lab-on-a-chip technology.<br>Advanced Drug Delivery Reviews, 2013, 65, 1403-1419.                              | 6.6  | 173       |
| 3  | Recent Advances and Future Perspectives on Microfluidic Liquid Handling. Micromachines, 2017, 8, 186.                                                                                     | 1.4  | 131       |
| 4  | Nanozyme-based electrochemical biosensors for disease biomarker detection. Analyst, The, 2020, 145, 4398-4420.                                                                            | 1.7  | 121       |
| 5  | Organ-Tumor-on-a-Chip for Chemosensitivity Assay: A Critical Review. Micromachines, 2016, 7, 130.                                                                                         | 1.4  | 67        |
| 6  | Advances in Microfluidicsâ€Based Assisted Reproductive Technology: From Sperm Sorter to<br>Reproductive Systemâ€onâ€aâ€Chip. Advanced Biology, 2018, 2, 1700197.                          | 3.0  | 64        |
| 7  | A Comprehensive Review on Intracellular Delivery. Advanced Materials, 2021, 33, e2005363.                                                                                                 | 11.1 | 58        |
| 8  | Autoantibodies as diagnostic and prognostic cancer biomarker: Detection techniques and approaches.<br>Biosensors and Bioelectronics, 2019, 139, 111315.                                   | 5.3  | 53        |
| 9  | Prediction of Necrotic Core and Hypoxic Zone of Multicellular Spheroids in a Microbioreactor with a<br>U-Shaped Barrier. Micromachines, 2018, 9, 94.                                      | 1.4  | 52        |
| 10 | Rapid Softlithography Using 3Dâ€Printed Molds. Advanced Materials Technologies, 2019, 4, 1900425.                                                                                         | 3.0  | 51        |
| 11 | Effects of magnetic nanoparticles on mixing in droplet-based microfluidics. Physics of Fluids, 2019, 31,                                                                                  | 1.6  | 45        |
| 12 | Microneedle Arrays for Sampling and Sensing Skin Interstitial Fluid. Chemosensors, 2021, 9, 83.                                                                                           | 1.8  | 44        |
| 13 | Eccentricity Effect of Micropatterned Surface on Contact Angle. Langmuir, 2012, 28, 4793-4799.                                                                                            | 1.6  | 43        |
| 14 | Microfluidics for Porous Systems: Fabrication, Microscopy and Applications. Transport in Porous Media, 2019, 130, 277-304.                                                                | 1.2  | 43        |
| 15 | An Onâ€Chip SiC MEMS Device with Integrated Heating, Sensing, and Microfluidic Cooling Systems.<br>Advanced Materials Interfaces, 2018, 5, 1800764.                                       | 1.9  | 41        |
| 16 | Novel approaches in cancer management with circulating tumor cell clusters. Journal of Science:<br>Advanced Materials and Devices, 2019, 4, 1-18.                                         | 1.5  | 41        |
| 17 | Eccentricity effects of microhole arrays on drag reduction efficiency of microchannels with a hydrophobic wall. Physics of Fluids, 2012, 24, .                                            | 1.6  | 31        |
| 18 | Simple, Cost-Effective, and Continuous 3D Dielectrophoretic Microchip for Concentration and Separation of Bioparticles. Industrial & Engineering Chemistry Research, 2020, 59, 3772-3783. | 1.8  | 31        |

NAVID KASHANINEJAD

| #  | Article                                                                                                                                                                            | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Fabrication and characterization of low-cost, bead-free, durable and hydrophobic electrospun<br>membrane for 3D cell culture. Biomedical Microdevices, 2017, 19, 74.               | 1.4 | 30        |
| 20 | An integrated microfluidic concentration gradient generator for mechanical stimulation and drug delivery. Journal of Science: Advanced Materials and Devices, 2021, 6, 280-290.    | 1.5 | 24        |
| 21 | Cryoprotectant-Free Freezing of Cells Using Liquid Marbles Filled with Hydrogel. ACS Applied<br>Materials & Interfaces, 2018, 10, 43439-43449.                                     | 4.0 | 23        |
| 22 | A new non-dimensional parameter to obtain the minimum mixing length in tree-like concentration gradient generators. Chemical Engineering Science, 2019, 195, 120-126.              | 1.9 | 22        |
| 23 | Numerical Simulation of the Behavior of Toroidal and Spheroidal Multicellular Aggregates in Microfluidic Devices with Microwell and U-Shaped Barrier. Micromachines, 2017, 8, 358. | 1.4 | 21        |
| 24 | Challenge in particle delivery to cells in a microfluidic device. Drug Delivery and Translational Research, 2018, 8, 830-842.                                                      | 3.0 | 21        |
| 25 | Wide-Band-Gap Semiconductors for Biointegrated Electronics: Recent Advances and Future Directions. ACS Applied Electronic Materials, 2021, 3, 1959-1981.                           | 2.0 | 21        |
| 26 | A high-performance polydimethylsiloxane electrospun membrane for cell culture in lab-on-a-chip.<br>Biomicrofluidics, 2018, 12, 024117.                                             | 1.2 | 19        |
| 27 | A tool for designing tree-like concentration gradient generators for lab-on-a-chip applications.<br>Chemical Engineering Science, 2020, 212, 115339.                               | 1.9 | 19        |
| 28 | The three-phase contact line shape and eccentricity effect of anisotropic wetting on hydrophobic surfaces. Soft Matter, 2013, 9, 527-535.                                          | 1.2 | 18        |
| 29 | Three-Dimensional Modeling of Avascular Tumor Growth in Both Static and Dynamic Culture<br>Platforms. Micromachines, 2019, 10, 580.                                                | 1.4 | 17        |
| 30 | RhoA and Rac1 in Liver Cancer Cells: Induction of Overexpression Using Mechanical Stimulation.<br>Micromachines, 2020, 11, 729.                                                    | 1.4 | 16        |
| 31 | Anti-Cancer Drug Screening with Microfluidic Technology. Applied Sciences (Switzerland), 2021, 11, 9418.                                                                           | 1.3 | 14        |
| 32 | PCR-Free Detection of Long Non-Coding HOTAIR RNA in Ovarian Cancer Cell Lines and Plasma Samples.<br>Cancers, 2020, 12, 2233.                                                      | 1.7 | 12        |
| 33 | Signal-Based Methods in Dielectrophoresis for Cell and Particle Separation. Biosensors, 2022, 12, 510.                                                                             | 2.3 | 12        |
| 34 | Advances in numerical approaches for microfluidic cell analysis platforms. Journal of Science:<br>Advanced Materials and Devices, 2020, 5, 295-307.                                | 1.5 | 11        |
| 35 | Inventions and Innovations in Preclinical Platforms for Cancer Research. Inventions, 2018, 3, 43.                                                                                  | 1.3 | 10        |
| 36 | An Interface–Particle Interaction Approach for Evaluation of the Co-Encapsulation Efficiency of Cells<br>in a Flow-Focusing Droplet Generator. Sensors, 2020, 20, 3774.            | 2.1 | 10        |

NAVID KASHANINEJAD

| #  | Article                                                                                                                                                                                                    | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Investigation of viscoelastic focusing of particles and cells in a zigzag microchannel.<br>Electrophoresis, 2021, 42, 2230-2237.                                                                           | 1.3  | 10        |
| 38 | High-Throughput, Label-Free Isolation of White Blood Cells from Whole Blood Using Parallel Spiral<br>Microchannels with U-Shaped Cross-Section. Biosensors, 2021, 11, 406.                                 | 2.3  | 10        |
| 39 | Enrichment of cancer stem-like cells by controlling oxygen, glucose and fluid shear stress in a microfluidic spheroid culture device. Journal of Science: Advanced Materials and Devices, 2022, 7, 100439. | 1.5  | 10        |
| 40 | Analytical Modeling of Slip Flow in Parallel-plate Microchannels. Micro and Nanosystems, 2013, 5, 245-252.                                                                                                 | 0.3  | 8         |
| 41 | Micro/nanofluidic devices for drug delivery. Progress in Molecular Biology and Translational Science, 2022, 187, 9-39.                                                                                     | 0.9  | 8         |
| 42 | Fluid Mechanics of Flow Through Rectangular Hydrophobic Microchannels. , 2011, , .                                                                                                                         |      | 6         |
| 43 | A microfluidic concentration gradient generator for simultaneous delivery of two reagents on a millimeter-sized sample. Journal of Flow Chemistry, 2020, 10, 615-625.                                      | 1.2  | 6         |
| 44 | A Proof-of-Concept Study Using Numerical Simulations of an Acoustic Spheroid-on-a-Chip Platform<br>for Improving 3D Cell Culture. Sensors, 2021, 21, 5529.                                                 | 2.1  | 4         |
| 45 | Sessile Liquid Marbles with Embedded Hydrogels as Bioreactors for Threeâ€Dimensional Cell Culture.<br>Advanced Biology, 2021, 5, 2000108.                                                                  | 1.4  | 4         |
| 46 | Magnetofluidic spreading in circular chambers under a uniform magnetic field. Microfluidics and Nanofluidics, 2020, 24, 1.                                                                                 | 1.0  | 3         |
| 47 | Engineering Micropatterned Surfaces for Controlling the Evaporation Process of Sessile Droplets.<br>Technologies, 2020, 8, 29.                                                                             | 3.0  | 3         |
| 48 | Corrigendum "Temperature control of a cabin in an automobile using thermal modeling and fuzzy<br>controller―[Applied Energy 97 (2) (2012) 860–868]. Applied Energy, 2013, 103, 721.                        | 5.1  | 2         |
| 49 | A new insight into a thermoplastic microfluidic device aimed at improvement of oxygenation process and avoidance of shear stress during cell culture. Biomedical Microdevices, 2022, 24, 15.               | 1.4  | 2         |
| 50 | Intracellular Delivery: A Comprehensive Review on Intracellular Delivery (Adv. Mater. 13/2021).<br>Advanced Materials, 2021, 33, 2170103.                                                                  | 11.1 | 1         |
| 51 | Electrochemical Detection of Global DNA Methylation Using Biologically Assembled Polymer Beads.<br>Cancers, 2021, 13, 3787.                                                                                | 1.7  | 1         |
| 52 | Microfluidics: Rapid Softlithography Using 3Dâ€Printed Molds (Adv. Mater. Technol. 10/2019). Advanced<br>Materials Technologies, 2019, 4, 1970056.                                                         | 3.0  | 0         |
| 53 | Acknowledgement to Reviewers of Fluids in 2018. Fluids, 2019, 4, 9.                                                                                                                                        | 0.8  | 0         |