

## List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4494845/publications.pdf Version: 2024-02-01

|          |                | 53794        | 25787          |
|----------|----------------|--------------|----------------|
| 121      | 11,925         | 45           | 108            |
| papers   | citations      | h-index      | g-index        |
|          |                |              |                |
|          |                |              |                |
| 128      | 128            | 128          | 13855          |
| all docs | docs citations | times ranked | citing authors |
|          |                |              |                |

| #  | Article                                                                                                                                                                                                                    | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Batteries and fuel cells for emerging electric vehicle markets. Nature Energy, 2018, 3, 279-289.                                                                                                                           | 39.5 | 1,944     |
| 2  | High oxygen-reduction activity and durability of nitrogen-doped graphene. Energy and Environmental<br>Science, 2011, 4, 760.                                                                                               | 30.8 | 1,153     |
| 3  | Recent advances in activity and durability enhancement of Pt/C catalytic cathode in PEMFC. Journal of Power Sources, 2007, 172, 145-154.                                                                                   | 7.8  | 949       |
| 4  | Single-atom Catalysis Using Pt/Graphene Achieved through Atomic Layer Deposition. Scientific Reports, 2013, 3, .                                                                                                           | 3.3  | 719       |
| 5  | Nitrogen doping effects on the structure of graphene. Applied Surface Science, 2011, 257, 9193-9198.                                                                                                                       | 6.1  | 476       |
| 6  | Recent advances in activity and durability enhancement of Pt/C catalytic cathode in PEMFC. Journal of Power Sources, 2007, 172, 133-144.                                                                                   | 7.8  | 458       |
| 7  | A review of the stability and durability of non-precious metal catalysts for the oxygen reduction reaction in proton exchange membrane fuel cells. Journal of Power Sources, 2015, 285, 334-348.                           | 7.8  | 457       |
| 8  | Current Status and Future Development of Catalyst Materials and Catalyst Layers for Proton<br>Exchange Membrane Fuel Cells: An Industrial Perspective. ACS Energy Letters, 2017, 2, 629-638.                               | 17.4 | 443       |
| 9  | Bridging the gap between highly active oxygen reduction reaction catalysts and effective catalyst layers for proton exchange membrane fuel cells. Nature Energy, 2021, 6, 475-486.                                         | 39.5 | 252       |
| 10 | Extremely Stable Platinum Nanoparticles Encapsulated in a Zirconia Nanocage by Area‧elective Atomic<br>Layer Deposition for the Oxygen Reduction Reaction. Advanced Materials, 2015, 27, 277-281.                          | 21.0 | 238       |
| 11 | Nitrogen Doping Effects on Carbon Nanotubes and the Origin of the Enhanced Electrocatalytic<br>Activity of Supported Pt for Proton-Exchange Membrane Fuel Cells. Journal of Physical Chemistry C,<br>2011, 115, 3769-3776. | 3.1  | 228       |
| 12 | Ordered bilayer ruthenium–platinum core-shell nanoparticles as carbon monoxide-tolerant fuel cell<br>catalysts. Nature Communications, 2013, 4, 2466.                                                                      | 12.8 | 200       |
| 13 | Enhanced stability of Pt electrocatalysts by nitrogen doping in CNTs for PEM fuel cells.<br>Electrochemistry Communications, 2009, 11, 2071-2076.                                                                          | 4.7  | 196       |
| 14 | Critical advancements in achieving high power and stable nonprecious metal catalyst–based MEAs for<br>real-world proton exchange membrane fuel cell applications. Science Advances, 2018, 4, eaar7180.                     | 10.3 | 189       |
| 15 | 3-D composite electrodes for high performance PEM fuel cells composed of Pt supported on<br>nitrogen-doped carbon nanotubes grown on carbon paper. Electrochemistry Communications, 2009,<br>11, 438-441.                  | 4.7  | 152       |
| 16 | Rh(I)-Catalyzed Intramolecular [3 + 2] Cycloaddition of <i>trans</i> -Vinylcyclopropane-enes. Journal of the American Chemical Society, 2008, 130, 7178-7179.                                                              | 13.7 | 139       |
| 17 | Is the rapid initial performance loss of Fe/N/C non precious metal catalysts due to micropore flooding?. Energy and Environmental Science, 2017, 10, 296-305.                                                              | 30.8 | 127       |
| 18 | Titanium carbide and its core-shelled derivative TiC@TiO2 as catalyst supports for proton exchange membrane fuel cells. Electrochimica Acta, 2012, 69, 397-405.                                                            | 5.2  | 126       |

| #  | Article                                                                                                                                                                                                                     | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Multigrain Platinum Nanowires Consisting of Oriented Nanoparticles Anchored on Sulfurâ€Đoped<br>Graphene as a Highly Active and Durable Oxygen Reduction Electrocatalyst. Advanced Materials, 2015,<br>27, 1229-1234.       | 21.0 | 126       |
| 20 | Integrating PGMâ€Free Catalysts into Catalyst Layers and Proton Exchange Membrane Fuel Cell Devices.<br>Advanced Materials, 2019, 31, e1804846.                                                                             | 21.0 | 121       |
| 21 | Pt/Pd Single-Atom Alloys as Highly Active Electrochemical Catalysts and the Origin of Enhanced Activity. ACS Catalysis, 2019, 9, 9350-9358.                                                                                 | 11.2 | 106       |
| 22 | Non-noble metal oxygen reduction electrocatalysts based on carbon nanotubes with controlled nitrogen contents. Journal of Power Sources, 2011, 196, 1795-1801.                                                              | 7.8  | 105       |
| 23 | Atomicâ€Scale Preparation of Octopod Nanoframes with Highâ€Index Facets as Highly Active and Stable<br>Catalysts. Advanced Materials, 2017, 29, .                                                                           | 21.0 | 89        |
| 24 | Measurement of effective gas diffusion coefficients of catalyst layers of PEM fuel cells with a Loschmidt diffusion cell. Journal of Power Sources, 2011, 196, 674-678.                                                     | 7.8  | 87        |
| 25 | 3D Porous Fe/N/C Spherical Nanostructures As High-Performance Electrocatalysts for Oxygen<br>Reduction in Both Alkaline and Acidic Media. ACS Applied Materials & Interfaces, 2017, 9,<br>36944-36954.                      | 8.0  | 83        |
| 26 | Electrocatalytic activity and durability of Pt/NbO2 and Pt/Ti4O7 nanofibers for PEM fuel cell oxygen reduction reaction. Electrochimica Acta, 2012, 59, 538-547.                                                            | 5.2  | 81        |
| 27 | An active and robust Si-Fe/N/C catalyst derived from waste reed for oxygen reduction. Applied Catalysis B: Environmental, 2018, 237, 85-93.                                                                                 | 20.2 | 78        |
| 28 | Non-noble metal-carbonized aerogel composites as electrocatalysts for the oxygen reduction reaction. Electrochemistry Communications, 2003, 5, 272-275.                                                                     | 4.7  | 74        |
| 29 | Accelerated Stress Testing by Rotating Disk Electrode for Carbon Corrosion in Fuel Cell Catalyst<br>Supports. Journal of the Electrochemical Society, 2015, 162, F783-F788.                                                 | 2.9  | 69        |
| 30 | Rational design of porous structures via molecular layer deposition as an effective stabilizer for enhancing Pt ORR performance. Nano Energy, 2019, 60, 111-118.                                                            | 16.0 | 62        |
| 31 | A New Fuel Cell Electrocatalyst Based on Carbonized Polyacrylonitrile Foam: The Nature of Platinumâ€&upport Interactions. Journal of the Electrochemical Society, 1997, 144, 90-95.                                         | 2.9  | 58        |
| 32 | Optimization of sulfur-doped graphene as an emerging platinum nanowires support for oxygen reduction reaction. Nano Energy, 2016, 19, 27-38.                                                                                | 16.0 | 58        |
| 33 | A transient PEMFC model with CO poisoning and mitigation by O2 bleeding and Ru-containing catalyst.<br>Journal of Power Sources, 2007, 166, 1-21.                                                                           | 7.8  | 57        |
| 34 | Atomic layer deposition assisted Pt-SnO2 hybrid catalysts on nitrogen-doped CNTs with enhanced electrocatalytic activities for low temperature fuel cells. International Journal of Hydrogen Energy, 2011, 36, 11085-11092. | 7.1  | 57        |
| 35 | Web-like 3D Architecture of Pt Nanowires and Sulfur-Doped Carbon Nanotube with Superior Electrocatalytic Performance. ACS Sustainable Chemistry and Engineering, 2018, 6, 93-98.                                            | 6.7  | 57        |

36 Spectroscopic Investigation of a Polypyrrole / MoS4 2 â^'  / MoS3 Composite Film Electrode in Aqueous KCl Solution. Journal of the Electrochemical Society, 1995, 142, 2296-2301.

| #  | Article                                                                                                                                                                                                                                | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Effect of Pt-loaded carbon support nanostructure on oxygen reduction catalysis. Journal of Power Sources, 2011, 196, 5438-5445.                                                                                                        | 7.8  | 55        |
| 38 | Nanocrystalline tungsten carbide (WC) synthesis/characterization and its possible application as a PEM fuel cell catalyst support. Electrochimica Acta, 2012, 61, 198-206.                                                             | 5.2  | 55        |
| 39 | Effect of carbon support nanostructure on the oxygen reduction activity of Pt/C catalysts. Journal of Materials Chemistry A, 2013, 1, 2812.                                                                                            | 10.3 | 53        |
| 40 | Origin of achieving the enhanced activity and stability of Pt electrocatalysts with strong metal-support interactions via atomic layer deposition. Nano Energy, 2018, 53, 716-725.                                                     | 16.0 | 53        |
| 41 | Total Synthesis of (+)â€Asteriscanolide: Further Exploration of the Rhodium(I)â€Catalyzed [(5+2)+1]<br>Reaction of Eneâ€Vinylcyclopropanes and CO. Chemistry - an Asian Journal, 2012, 7, 593-604.                                     | 3.3  | 51        |
| 42 | High stability and activity of Pt electrocatalyst on atomic layer deposited metal oxide/nitrogen-doped graphene hybrid support. International Journal of Hydrogen Energy, 2014, 39, 15967-15974.                                       | 7.1  | 51        |
| 43 | Impedance study of polypyrrole films doped with tetrathiomolybdate anions and containing molybdenum trisulfide. The Journal of Physical Chemistry, 1993, 97, 12373-12378.                                                              | 2.9  | 48        |
| 44 | Atomic layer deposited tantalum oxide to anchor Pt/C for a highly stable catalyst in PEMFCs. Journal of Materials Chemistry A, 2017, 5, 9760-9767.                                                                                     | 10.3 | 48        |
| 45 | Gold(I)-Catalyzed Ring Expansions of Unactivated Alkynylcyclopropanes to<br>( <i>E</i> )-2-Alkylidenecyclobutanamines in the Presence of Sulfonamides. Organic Letters, 2010, 12,<br>804-807.                                          | 4.6  | 47        |
| 46 | Low equivalent weight short-side-chain perfluorosulfonic acid ionomers in fuel cell cathode catalyst layers. Journal of Power Sources, 2011, 196, 6168-6176.                                                                           | 7.8  | 47        |
| 47 | Ultralow Loading and High-Performing Pt Catalyst for a Polymer Electrolyte Membrane Fuel Cell<br>Anode Achieved by Atomic Layer Deposition. ACS Catalysis, 2019, 9, 5365-5374.                                                         | 11.2 | 47        |
| 48 | Polypyrrole film electrodes electrochemically doped with tetrathiomolybdate anions: preparation and characterization. Journal of Electroanalytical Chemistry, 1992, 334, 35-55.                                                        | 3.8  | 46        |
| 49 | Cobalt-carbonized aerogel nanocomposites electrocatalysts for the oxygen reduction reaction.<br>International Journal of Hydrogen Energy, 2005, 30, 1011-1015.                                                                         | 7.1  | 46        |
| 50 | Pt–SnO2/nitrogen-doped CNT hybrid catalysts for proton-exchange membrane fuel cells (PEMFC):<br>Effects of crystalline and amorphous SnO2 by atomic layer deposition. Journal of Power Sources,<br>2013, 238, 144-149.                 | 7.8  | 44        |
| 51 | A New Fuel Cell Electrocatalyst Based on Highly Porous Carbonized Polyacrylonitrile Foam with Very<br>Low Platinum Loading. Journal of the Electrochemical Society, 1996, 143, L7-L9.                                                  | 2.9  | 43        |
| 52 | A Study of the Catalytic Interface for O <sub>2</sub> Electroreduction on Pt: The Interaction between<br>Carbon Support Meso/Microstructure and Ionomer (Nafion) Distribution. Journal of Physical<br>Chemistry C, 2009, 113, 298-307. | 3.1  | 43        |
| 53 | New insights into non-precious metal catalyst layer designs for proton exchange membrane fuel cells:<br>Improving performance and stability. Journal of Power Sources, 2017, 344, 39-45.                                               | 7.8  | 43        |
| 54 | Novel Mesoporous Carbon Supports for PEMFC Catalysts. Catalysts, 2015, 5, 1046-1067.                                                                                                                                                   | 3.5  | 39        |

| #  | Article                                                                                                                                                                                                                                    | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Top-down bottom-up graphene synthesis. Nano Futures, 2019, 3, 042003.                                                                                                                                                                      | 2.2  | 39        |
| 56 | Electrochemical preparation and characterization of conducting copolymers: poly (aniline-co-N-butylaniline). Synthetic Metals, 1997, 88, 65-72.                                                                                            | 3.9  | 38        |
| 57 | 3D boron doped carbon nanorods/carbon-microfiber hybrid composites: synthesis and applications in a highly stable proton exchange membrane fuel cell. Journal of Materials Chemistry, 2011, 21, 18195.                                     | 6.7  | 38        |
| 58 | Pt-SnO2â^'Pd/C Electrocatalyst with Enhanced Activity and Durability for the Oxygen Reduction<br>Reaction at Low Pt Loading: The Effect of Carbon Support Type and Activation. Journal of Physical<br>Chemistry C, 2010, 114, 16488-16504. | 3.1  | 37        |
| 59 | Understanding the Corrosion Resistance of Meso- and Micro-Porous Carbons for Application in PEM Fuel Cells. Journal of the Electrochemical Society, 2018, 165, F3230-F3240.                                                                | 2.9  | 37        |
| 60 | Improving the corrosion resistance of proton exchange membrane fuel cell carbon supports by pentafluorophenyl surface functionalization. Journal of Power Sources, 2018, 378, 732-741.                                                     | 7.8  | 36        |
| 61 | Oxygen reduction on a new electrocatalyst based on highly porous carbonized polyacrylonitrile<br>microcellular foam with very low platinum loading. Journal of Electroanalytical Chemistry, 1996, 415,<br>115-121.                         | 3.8  | 35        |
| 62 | Carbon–Nb0.07Ti0.93O2 composite supported Pt–Pd electrocatalysts for PEM fuel cell oxygen reduction reaction. Electrochimica Acta, 2012, 75, 220-228.                                                                                      | 5.2  | 35        |
| 63 | Effect of CeOx Crystallite Size on the Chemical Stability of CeOx Nanoparticles. Journal of the Electrochemical Society, 2014, 161, F1075-F1080.                                                                                           | 2.9  | 35        |
| 64 | Embellished hollow spherical catalyst boosting activity and durability for oxygen reduction reaction. Nano Energy, 2018, 51, 745-753.                                                                                                      | 16.0 | 33        |
| 65 | Evaluation of the Corrosion Resistance of Carbons for Use as PEM Fuel Cell Cathode Supports.<br>Journal of the Electrochemical Society, 2015, 162, F1333-F1341.                                                                            | 2.9  | 32        |
| 66 | TfOH-catalyzed tandem cyclopropane ring enlargement/C–C formation/etherification of<br>alkynylcyclopropanes and 1,3-diketones to cyclobutane-fused dihydrofurans. Chemical<br>Communications, 2011, 47, 794-796.                           | 4.1  | 31        |
| 67 | Wettability of Nafion and Nafion/Vulcan Carbon Composite Films. Langmuir, 2012, 28, 6698-6705.                                                                                                                                             | 3.5  | 31        |
| 68 | Electrochemistry of poly(aniline-co-N-butylaniline) copolymer: Comparison with polyaniline and poly(N-butylaniline). Journal of Electroanalytical Chemistry, 1995, 381, 71-80.                                                             | 3.8  | 30        |
| 69 | Highly Durable Platinum-Cobalt Nanowires by Microwave Irradiation as Oxygen Reduction Catalyst for PEM Fuel Cell. Electrochemical and Solid-State Letters, 2012, 15, B83.                                                                  | 2.2  | 30        |
| 70 | First time investigation of Pt nanocatalysts deposited inside carbon mesopores of controlled length<br>and diameter. Journal of Materials Chemistry, 2012, 22, 7164.                                                                       | 6.7  | 29        |
| 71 | Oxygen reduction activity dependence on the mesoporous structure of imprinted carbon supports.<br>Electrochemistry Communications, 2010, 12, 1666-1669.                                                                                    | 4.7  | 28        |
| 72 | Mechanisms of BrÃ,nsted Acid Catalyzed Additions of Phenols and Protected Amines to Olefins: A DFT<br>Study. European Journal of Organic Chemistry, 2008, 2008, 4296-4303.                                                                 | 2.4  | 27        |

| #  | Article                                                                                                                                                                              | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Electrocatalytic Oxygen Reduction Performance of Silver Nanoparticle Decorated Electrochemically<br>Exfoliated Graphene. Langmuir, 2015, 31, 9718-9727.                              | 3.5  | 27        |
| 74 | Effects of crossover hydrogen on platinum dissolution and agglomeration. Journal of Power<br>Sources, 2011, 196, 7985-7988.                                                          | 7.8  | 26        |
| 75 | Surface Characteristics of Microporous and Mesoporous Carbons Functionalized with<br>Pentafluorophenyl Groups. ACS Applied Materials & Interfaces, 2018, 10, 2130-2142.              | 8.0  | 25        |
| 76 | New insights into the surface properties of hard-templated ordered mesoporous carbons. Carbon, 2018, 127, 707-717.                                                                   | 10.3 | 25        |
| 77 | Oxygen evolution on titanium anodes coated with conductive metallic oxides: Kinetics and mechanism in alkaline solution. Electrochimica Acta, 1996, 41, 827-834.                     | 5.2  | 24        |
| 78 | Fractal Dimension of Platinum Particles Dispersed in Highly Porous Carbonized Polyacrylonitrile<br>Microcellular Foam. Journal of the Electrochemical Society, 1997, 144, 1734-1738. | 2.9  | 23        |
| 79 | Wettability of colloid-imprinted carbons by contact angle kinetics and water vapor sorption measurements. Carbon, 2015, 87, 44-60.                                                   | 10.3 | 23        |
| 80 | Degradation Resistant Cathodes in Polymer Electrolyte Membrane Fuel Cells. ECS Transactions, 2006,<br>3, 657-666.                                                                    | 0.5  | 22        |
| 81 | PEM Fuel Cell Catalysts: The Importance of Catalyst Support. ECS Transactions, 2008, 16, 2101-2113.                                                                                  | 0.5  | 22        |
| 82 | Nb-doped TiO2/carbon composite supports synthesized by ultrasonic spray pyrolysis for proton exchange membrane (PEM) fuel cell catalysts. Journal of Power Sources, 2012, 220, 1-9.  | 7.8  | 22        |
| 83 | A regularization method for constructing trend function in Kriging model. Structural and<br>Multidisciplinary Optimization, 2019, 59, 1221-1239.                                     | 3.5  | 21        |
| 84 | Characterization of Catalyst Layer Structural Changes in PEMFC as a Function of Durability Testing.<br>ECS Transactions, 2006, 3, 743-751.                                           | 0.5  | 20        |
| 85 | Electrochemical and In Situ Spectroelectrochemical Study on Polypyrrole/Disulfide Composite<br>Electrode. Journal of the Electrochemical Society, 1994, 141, L49-L50.                | 2.9  | 19        |
| 86 | Oxygen reduction on an iron?carbonized aerogel nanocomposite electrocatalyst. Journal of Solid<br>State Electrochemistry, 2005, 9, 146-153.                                          | 2.5  | 19        |
| 87 | Controlling the deposition of Pt nanoparticles within the surface region of Nafion. Journal of<br>Membrane Science, 2011, 376, 162-169.                                              | 8.2  | 19        |
| 88 | Effects of synthesis condition on formation of desired crystal structures of doped-TiO2/carbon composite supports for ORR electrocatalysts. Electrochimica Acta, 2012, 77, 225-231.  | 5.2  | 19        |
| 89 | UV–visible spectroscopy method for screening the chemical stability of potential antioxidants for proton exchange membrane fuel cells. Journal of Power Sources, 2015, 281, 238-242. | 7.8  | 18        |
| 90 | Doped Ceria Nanoparticles with Reduced Solubility and Improved Peroxide Decomposition Activity for PEM Fuel Cells. Journal of the Electrochemical Society, 2021, 168, 024507.        | 2.9  | 18        |

| #   | Article                                                                                                                                                                              | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | A penalized blind likelihood Kriging method for surrogate modeling. Structural and Multidisciplinary<br>Optimization, 2020, 61, 457-474.                                             | 3.5  | 17        |
| 92  | A New Polypyrrole/Disulfide Electrode Studied by Electrochemistry and the Electrochemical Quartz<br>Crystal Microbalance. The Journal of Physical Chemistry, 1996, 100, 15848-15855. | 2.9  | 15        |
| 93  | A new electrocatalyst consisting of a molecularly homogeneous platinum–aerogel nanocomposite.<br>Canadian Journal of Chemistry, 1997, 75, 1666-1673.                                 | 1.1  | 15        |
| 94  | Tailoring Carbon Nanotube Microsphere Architectures with Controlled Porosity. Advanced Functional Materials, 2019, 29, 1903983.                                                      | 14.9 | 15        |
| 95  | Electrically Bloomed Platinum Nanoflowers on Exfoliated Graphene: An Efficient Alcohol Oxidation<br>Catalyst. Journal of the Electrochemical Society, 2016, 163, D615-D621.          | 2.9  | 14        |
| 96  | Composite Carbon Nanotube Microsphere Coatings for Use as Electrode Supports. Advanced<br>Functional Materials, 2018, 28, 1803713.                                                   | 14.9 | 14        |
| 97  | Lateral growth of polypyrrole at an ionically conducting polymer coated dual electrode assembly.<br>Journal of Electroanalytical Chemistry, 1993, 344, 395-400.                      | 3.8  | 11        |
| 98  | Graphene modified nanosized Ag electrocomposites. Materials Research Bulletin, 2017, 89, 42-50.                                                                                      | 5.2  | 10        |
| 99  | Reactive Sensor for Investigation of Gas Diffusion Layer Hydrophobicity in PEM Fuel Cells.<br>Electrochemical and Solid-State Letters, 2008, 11, B148.                               | 2.2  | 9         |
| 100 | Cavitation Mediated 3D Microstructured Architectures from Nanocarbon. Advanced Functional Materials, 2018, 28, 1706832.                                                              | 14.9 | 9         |
| 101 | Polynomial Response Surface based on basis function selection by multitask optimization and ensemble modeling. Complex & Intelligent Systems, 2022, 8, 1015-1034.                    | 6.5  | 8         |
| 102 | Anodic oxidation of cyclic 1,3-diketones. Electrochimica Acta, 1991, 36, 597-603.                                                                                                    | 5.2  | 7         |
| 103 | Selective anodic oxidation of camphor. Tetrahedron, 1991, 47, 5463-5470.                                                                                                             | 1.9  | 7         |
| 104 | Liquid Crystalline Phase Templated Platinum Catalyst for Oxygen Reduction. Journal of the<br>Electrochemical Society, 2009, 156, B1169.                                              | 2.9  | 7         |
| 105 | Unexpected hydrogen oxidation selectivity of Pt/NbTiO2 catalysts. Nano Energy, 2016, 27, 157-166.                                                                                    | 16.0 | 7         |
| 106 | Facile Aza-Michael Additions of Uracil Derivatives to Acrylates. Journal of Chemical Research, 2012, 36, 114-117.                                                                    | 1.3  | 6         |
| 107 | Nafion Film-Templated Platinum Electrodes for Oxygen Reduction. Electrocatalysis, 2010, 1, 22-27.                                                                                    | 3.0  | 5         |
|     |                                                                                                                                                                                      |      |           |

IF # ARTICLE CITATIONS Single-phase La0.8Sr0.2Co1-Mn O3- electrocatalyst as a triple H+/O2-/e- conductor enabling high-performance intermediate-temperature water electrolysis. Journal of Materiomics, 2022, 8, 1020-1030. 110 Reversal-tolerant Catalyst Layers., 2008, , 835-860. 4 Anodic Oxidation of 1,3-Cyclohexanedione to 1,2,3-Cyclohexanetrione. Chemistry Letters, 1992, 21, 1.3 609-612. Electrochemical properties and stabilization of conducting poly(diarylanilines) in acetonitrile. 112 3.9 3 Synthetic Metals, 1995, 73, 157-164. Structural and Morphological Properties of Carbon Supports: Effect on Catalyst Degradation. ECS Transactions, 2010, 33, 425-431. An Effective Surrogate Ensemble Modeling Method for Satellite Coverage Traffic Volume Prediction. Applied Sciences (Switzerland), 2019, 9, 3689. 114 2.5 2 Characterization of the Catalyst Layer in a PEMFC During Subzero Operation. ECS Transactions, 2008, 12, 13-19. Selective exposure of platinum catalyst embedded in protective oxide layer on conductive titanium 116 4.7 1 carbide support. Materials Today Energy, 2019, 13, 353-361. Anodic Oxidation of Norcamphor in Aqueous Electrolytes. Journal FÃ1/4r Praktische Chemie, Chemiker-Zeitung, 1992, 334, 37-40. 118 Surfactant Assisted Catalyst Layer Deposition for PEM Fuel Cells. ECS Transactions, 2009, 16, 1787-1794. 0.5 0 Corrosion Study of Mesoporous Carbon Supports for Use in PEM Fuel Cells. ECS Meeting Abstracts, 119 0.0Carbonaceous Nanowire Supports for Polymer Electrolyte Membrane Fuel Cells. ECS Transactions, 120 0 0.5 2015, 69, 1151-1166. Carbonaceous Nanowire Supports for Polymer Electrolyte Membrane Fuel Cells. Journal of the 121 Electrochemical Society, 2016, 163, F115-F121.

SIYU YE