Vladimir Stilinović

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4494435/publications.pdf

Version: 2024-02-01

93 papers

1,660 citations

257357 24 h-index 36 g-index

99 all docs 99 docs citations 99 times ranked 1692 citing authors

#	Article	IF	CITATIONS
1	Isostructural Halogen Exchange and Halogen Bonds: The Case of <i>N</i> -(4-Halogenobenzyl)-3-halogenopyridinium Halogenides. Crystal Growth and Design, 2022, 22, 1333-1344.	1.4	11
2	Conservation of the Hydrogen-Bonded Pyridone Homosynthon in Halogen-Bonded Cocrystals. Crystal Growth and Design, 2022, 22, 987-992.	1.4	13
3	Anticooperativity of Multiple Halogen Bonds and Its Effect on Stoichiometry of Cocrystals of Perfluorinated Iodobenzenes. Crystal Growth and Design, 2022, 22, 2644-2653.	1.4	14
4	Halogen-Bonded Cocrystals of 1,3,5-Triiodo-2,4,6-trifluorobenzene and Structural Isomers of Benzoylpyridine. Crystal Growth and Design, 2022, 22, 3981-3989.	1.4	6
5	Semiconductive 2D arrays of pancake-bonded oligomers of partially charged TCNQ radicals. IUCrJ, 2022, 9, 449-467.	1.0	1
6	Polymorphs of phenazine hexacyanoferrate(II) hydrate: supramolecular isomerism in a 2D hydrogen-bonded network. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2021, 77, 211-218.	0.5	0
7	The Amine Group as Halogen Bond Acceptor in Cocrystals of Aromatic Diamines and Perfluorinated lodobenzenes. Crystals, 2021, 11, 529.	1.0	13
8	Tautomeric Equilibrium of an Asymmetric \hat{l}^2 -Diketone in Halogen-Bonded Cocrystals with Perfluorinated Iodobenzenes. Crystals, 2021, 11, 699.	1.0	7
9	Influence of intramolecular hydrogen bonding on structures and thermal stability of Cu(II) and Zn(II) \hat{l}^2 -diketonate adducts. Journal of Molecular Structure, 2021, 1246, 131130.	1.8	2
10	Crystal engineering strategies towards halogen-bonded metal–organic multi-component solids: salts, cocrystals and salt cocrystals. CrystEngComm, 2021, 23, 3063-3083.	1.3	50
11	The role of mono- and dicarboxylic acids in the building of oxomolybdates containing {MoO ₄ }, {Mo ₂ O ₅ }, {Mo ₂ O _{}, {Mo₃O₈}, {Mo₅O₁₇}, {Mo₅}, {Mo₅O₂₆}, and}	1.4	1
12	(SiMoxsub>12x/sub>0xsub>40x/sub>) units. New Journal of Chemistry, 2021, 45, 19764-19774. Halogen Bonding in N-Alkyl-3-halogenopyridinium Salts. Crystals, 2021, 11, 1240.	1.0	7
13	Halogen and Hydrogen Bond Motifs in Ionic Cocrystals Derived from 3-Halopyridinium Halogenides and Perfluorinated Iodobenzenes. Crystal Growth and Design, 2021, 21, 6044-6050.	1.4	11
14	Evaluation of Halogenopyridinium Cations as Halogen Bond Donors. Crystal Growth and Design, 2021, 21, 6889-6901.	1.4	14
15	Morpholine-N-carboxylate as a ligand in coordination chemistry – Syntheses and structures of three heteroleptic copper(ii) and zinc complexes. Journal of Molecular Structure, 2020, 1205, 127627.	1.8	6
16	An Early Appearance of Nondecimal Notation in Secondary Education. Mathematical Intelligencer, 2020, 42, 50-54.	0.1	0
17	The effect of halogen bonding on protonated hexacyanoferrate networks in hexacyanoferrates of halogenopyridines. CrystEngComm, 2020, 22, 8142-8150.	1.3	15
18	Cobaloximes as Building Blocks in Halogen-Bonded Cocrystals. Materials, 2020, 13, 2370.	1.3	4

#	Article	IF	Citations
19	Halogenide anions as halogen and hydrogen bond acceptors in iodopyridinium halogenides. CrystEngComm, 2020, 22, 4039-4046.	1.3	26
20	Stoichiometry of adamantylamine–trinitrophloroglucinol salts controlled by solvate formation. CrystEngComm, 2020, 22, 1822-1833.	1.3	10
21	Directing role of the synthetic route on the self-assembly process of MoO42â^' units to Mo7O242â^' or Mo22O7416â^' ions. Inorganica Chimica Acta, 2020, 510, 119765.	1.2	3
22	A Crystallographic Charge Density Study of the Partial Covalent Nature of Strong Na‹a‹a‹a‹Br Halogen Bonds. Angewandte Chemie - International Edition, 2019, 58, 15702-15706.	7.2	41
23	Supramolecular Assemblies in Pb(II) Complexes with Hydrazido-Based Ligands. Crystals, 2019, 9, 323.	1.0	15
24	A Crystallographic Charge Density Study of the Partial Covalent Nature of Strong Nâ‹â‹â‹ârBr Halogen Bonds. Angewandte Chemie, 2019, 131, 15849-15853.	1.6	11
25	Influence of organic cations on the stacking of semiquinone radical anions. CrystEngComm, 2019, 21, 6920-6928.	1.3	9
26	Hydrothermal Reactions of [Co ^{(Co^{(Co}}</sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup>	1.4	6
27	[Mo ₇ O ₂₄ (Î ¹ /4-Mo ₈ O ₂₆)Mo ₇ O ₂₄ formed <i>via</i> two intermediate heptamolybdates [Co(en) ₃] ₂ [NaMo ₇ O ₂₄]Cl· <i>n</i> hhh] ¹⁶	â°'anio
28	(H ₃ O)[Co(en) ₃ ₂ Mo ₇ O ₂₄ ClA9H ₂ Partially Covalent Two-Electron/Multicentric Bonding between Semiquinone Radicals. Crystal Growth and Design, 2019, 19, 391-402.	ub>0. 1.4	29
29	Mechanochemical synthesis of (poly)oxalatomolybdates: In situ reaction monitoring by PXRD. Inorganica Chimica Acta, 2019, 488, 80-85.	1.2	3
30	Bifurcated and Monocentric Halogen Bonds in Cocrystals of Metal(II) Acetylacetonates with p-Dihalotetrafluorobenzenes. Crystal Growth and Design, 2019, 19, 1245-1256.	1.4	30
31	Supramolecular assembly of oxalatomolybdates controlled by the hydrogen bonding potential of Co(<scp>iii</scp>)-ammine cations. CrystEngComm, 2018, 20, 1889-1898.	1.3	8
32	Pbâ $^{-}$ X (X = N, S, I) tetrel bonding interactions in Pb($^{+}$ scp $^{+}$ ii $^{+}$ scp $^{+}$) complexes: X-ray characterization, Hirshfeld surfaces and DFT calculations. CrystEngComm, 2018, 20, 2812-2821.	1.3	63
33	Pancake Bonding in Ï€â€ S tacked Trimers in a Salt of Tetrachloroquinone Anion. Chemistry - A European Journal, 2018, 24, 8292-8297.	1.7	26
34	Probing semiconductivity in crystals of stable semiquinone radicals: organic salts of 5,6-dichloro-2,3-dicyanosemiquinone (DDQ) radical anions. CrystEngComm, 2018, 20, 1862-1873.	1.3	18
35	Halogen Bonding of $\langle i \rangle N \langle i \rangle$ -Bromophthalimide by Grinding and Solution Crystallization. Crystal Growth and Design, 2018, 18, 1182-1190.	1.4	21
36	Comparison of isomeric <i>meta</i> -and <i>para</i> -diiodotetrafluorobenzene as halogen bond donors in crystal engineering. New Journal of Chemistry, 2018, 42, 10584-10591.	1.4	42

#	Article	IF	CITATIONS
37	Playing with Isomerism: Cocrystallization of Isomeric $\langle i \rangle N \langle i \rangle$ -Salicylideneaminopyridines with Perfluorinated Compounds as Halogen Bond Donors and Its Impact on Photochromism. Crystal Growth and Design, 2018, 18, 6833-6842.	1.4	25
38	Green and rapid mechanosynthesis of high-porosity NU- and UiO-type metal–organic frameworks. Chemical Communications, 2018, 54, 6999-7002.	2.2	63
39	Halogen-bonded cocrystals of <i>N</i> -salicylidene Schiff bases and iodoperfluorinated benzenes: hydroxyl oxygen as a halogen bond acceptor. CrystEngComm, 2018, 20, 5332-5339.	1.3	17
40	On the importance of Pba^X (X = O, N, S, Br) tetrel bonding interactions in a series of tetra- and hexa-coordinated $Pb(\scp>ii\scrp>)$ compounds. CrystEngComm, 2018, 20, 5033-5044.	1.3	41
41	Iodide··Â-Ï€ Interactions of Perhalogenated Quinoid Rings in Co-crystals with Organic Bases. Crystal Growth and Design, 2018, 18, 5182-5193.	1.4	19
42	Cooperativity of halogen bonds – enhancing halogen-bond donating ability of halogenated pyridines through halogen bonding with N-haloimides. Acta Crystallographica Section A: Foundations and Advances, 2018, 74, e335-e335.	0.0	О
43	Multicentric two-electron covalent bonding (pancake bonding) between semiquinone radicals determines bulk properties. Acta Crystallographica Section A: Foundations and Advances, 2018, 74, e80-e80.	0.0	1
44	Halogen and Hydrogen Bonding between (<i>N</i> â€Halogeno)â€succinimides and Pyridine Derivatives in Solution, the Solid State and In Silico. Chemistry - A European Journal, 2017, 23, 5244-5257.	1.7	72
45	Halogen and Hydrogen Bonding between (N -Halogeno)-succinimides and Pyridine Derivatives in Solution, the Solid State and in Silico. Chemistry - A European Journal, 2017, 23, 5175-5175.	1.7	2
46	Copper(II) perchlorate complexes with N-arylalkyliminodiacetamide ligands: X-ray structural, vibrational spectroscopic, DFT and thermogravimetric studies. Inorganica Chimica Acta, 2017, 462, 57-63.	1.2	7
47	Aromatic versus Aliphatic Carboxyl Group as a Hydrogen Bond Donor in Salts and Cocrystals of an Asymmetric Diacid and Pyridine Derivatives. Crystal Growth and Design, 2017, 17, 5732-5743.	1.4	19
48	The halogen bonding proclivity of the ortho-methoxyâ€"hydroxy group in cocrystals of o-vanillin imines and diiodotetrafluoro-benzenes. CrystEngComm, 2017, 19, 5576-5582.	1.3	32
49	Benzyl Dihydrazone versus Thiosemicarbazone Schiff Base: Effects on the Supramolecular Arrangement of Cobalt Thiocyanate Complexes and the Generation of CoN ₆ and CoN ₄ Coordination Spheres. European Journal of Inorganic Chemistry, 2017, 4763-4772.	1.0	54
50	New Tricks by Old Anions: Hydrogen Bonded Hexacyanoferrous Anionic Networks. Crystal Growth and Design, 2017, 17, 6793-6800.	1.4	18
51	Inorganic bromine in organic molecular crystals: Database survey and four case studies. Journal of Molecular Structure, 2017, 1128, 400-409.	1.8	10
52	Supramolecular reactivity in the solid state: step-wise assembly of ternary cocrystals through hydrogen and halogen bonding. Acta Crystallographica Section A: Foundations and Advances, 2016, 72, s114-s114.	0.0	1
53	Metal–organic and supramolecular lead(<scp>ii</scp>) networks assembled from isomeric nicotinoylhydrazone blocks: the effects of ligand geometry and counter-ion on topology and supramolecular assembly. CrystEngComm, 2016, 18, 5375-5385.	1.3	40
54	Cobalt(II) and nickel(II) complexes with N-benzyl- and N-(p-nitrobenzyl)iminodiacetic acids. Structural and vibrational spectroscopic characterization and DFT study. Inorganica Chimica Acta, 2016, 453, 95-103.	1.2	7

#	Article	IF	CITATIONS
55	Fine Tuning of π-Stack Separation Distances of Semiquinone Radicals Affects Their Magnetic and Electric Properties. Crystal Growth and Design, 2016, 16, 4777-4782.	1.4	24
56	Benzothiazolyl- and benzimidazolyl-substituted 1-iminoisoindolines: synthesis, mechanistic studies, and crystal structure determination. Monatshefte FÃ $\frac{1}{4}$ r Chemie, 2016, 147, 1825-1837.	0.9	5
57	Inorganic–organic hybrid materials based on PbBr ₂ and pyridine–hydrazone blocks – structural and theoretical study. RSC Advances, 2016, 6, 60385-60393.	1.7	24
58	Preparation and Characterization of Copper(II) and Nickel(II) Complexes with N-Benzyliminodiacetamide Derivatives. Australian Journal of Chemistry, 2016, 69, 896.	0.5	6
59	Charge density of the semiquinone radical anion. Acta Crystallographica Section A: Foundations and Advances, 2016, 72, s90-s90.	0.0	0
60	A three-pronged approach to strong halogen bonds – crystallographic, solution and computational study of N-halosuccinimide-pyridine complexes. Acta Crystallographica Section A: Foundations and Advances, 2016, 72, s341-s341.	0.0	0
61	History as a tool for a crystallographic storyteller. Acta Crystallographica Section A: Foundations and Advances, 2015, 71, s176-s176.	0.0	0
62	Design and fine-tuning of magnetic properties in organic salts of semiquinone radical. Acta Crystallographica Section A: Foundations and Advances, 2015, 71, s136-s136.	0.0	0
63	Design of Lead(II) Metal–Organic Frameworks Based on Covalent and Tetrel Bonding. Chemistry - A European Journal, 2015, 21, 17951-17958.	1.7	93
64	Control of Interpenetration in Two-Dimensional Metal–Organic Frameworks by Modification of Hydrogen Bonding Capability of the Organic Bridging Subunits. Crystal Growth and Design, 2015, 15, 1336-1343.	1.4	32
65	From monomers to polymers: steric and supramolecular effects on dimensionality of coordination architectures of heteroleptic mercury(<scp>ii</scp>) halogenide–tetradentate Schiff base complexes. CrystEngComm, 2015, 17, 3493-3502.	1.3	29
66	Chemical Crystallography before Xâ€ray Diffraction. Angewandte Chemie - International Edition, 2014, 53, 638-652.	7.2	22
67	Supramolecular Stabilization of Metastable Tautomers in Solution and the Solid State. Chemistry - A European Journal, 2014, 20, 17333-17345.	1.7	34
68	Predominance of the triketo tautomer in acyldipivaloylmethanes in solution and the solid state. Journal of Molecular Structure, 2014, 1063, 123-130.	1.8	1
69	Tuning of coordination geometry via cooperation of inter- and intramolecular hydrogen bonds in bis(benzoylacetonato)manganese(ii) adducts with pyridine derivatives. CrystEngComm, 2013, 15, 6585.	1.3	9
70	$Vi \in Oa^{-}C$ interactions in crystal structures of oxovanadium-coordination compounds. New Journal of Chemistry, 2013, 37, 619-623.	1.4	13
71	Structural and Thermodynamic Insight into Solid State Phase Transition Mechanism of a 1,3,3′-Triketone. Crystal Growth and Design, 2013, 13, 1703-1711.	1.4	9
72	Teaching arithmetic in the Habsburg Empire at the end of the 18th centuryâ€"A textbook example. Historia Mathematica, 2013, 40, 309-323.	0.2	4

#	Article	IF	CITATIONS
73	The Effect of Specific Solvent–Solute Interactions on Complexation of Alkali-Metal Cations by a Lower-Rim Calix[4]arene Amide Derivative. Inorganic Chemistry, 2013, 52, 12702-12712.	1.9	24
74	Schiff bases derived from hydroxyaryl aldehydes: molecular and crystal structure, tautomerism, quinoid effect, coordination compounds. Macedonian Journal of Chemistry and Chemical Engineering, 2013, 29, 117.	0.2	99
75	Controlling Solvate Formation of a Schiff Base by Combining Mechano-chemistry with Solution Synthesis. Croatica Chemica Acta, 2012, 85, 485-493.	0.1	23
76	Bis(morpholine) hydrogen bond pincer – a novel series of heteroleptic Cu(ii) coordination compounds as receptors for electron rich guests. CrystEngComm, 2012, 14, 7493.	1.3	9
77	Salts and Co-Crystals of Gentisic Acid with Pyridine Derivatives: The Effect of Proton Transfer on the Crystal Packing (and Vice Versa). Crystal Growth and Design, 2012, 12, 5763-5772.	1.4	50
78	An Integrated Approach (Thermodynamic, Structural, and Computational) to the Study of Complexation of Alkali-Metal Cations by a Lower-Rim Calix[4]arene Amide Derivative in Acetonitrile. Inorganic Chemistry, 2012, 51, 6264-6278.	1.9	32
79	Morpholine adducts of Co, Ni, and Mn benzoylacetonates: isostructurality and C–HÂ-Â-Â-O hydrogen bonding. Structural Chemistry, 2012, 23, 587-594.	1.0	12
80	Hydrogen Bonding in Pyridinium Picrates: From Discrete Ion Pairs to 3D Networks. Crystal Growth and Design, 2011, 11, 4110-4119.	1.4	34
81	Novel substituted 1-iminoisoindoline derivatives: Synthesis, structure determination and antiproliferative activity. Journal of Molecular Structure, 2011, 1006, 259-265.	1.8	17
82	$\langle i \rangle N \langle i \rangle$ -Benzyl-3-nitroaniline. Acta Crystallographica Section E: Structure Reports Online, 2011, 67, o3013-o3013.	0.2	5
83	Keto–enol tautomerism in asymmetric Schiff bases derived from p-phenylenediamine. Journal of Molecular Structure, 2010, 984, 232-239.	1.8	47
84	Comparative refinement of correct and incorrect structural models of tetrabutylammonium tetrabutylborate – pitfalls arising from poor-quality data. Acta Crystallographica Section A: Foundations and Advances, 2010, 66, 441-445.	0.3	5
85	(R,S)-3-Carboxy-2-(isoquinolinium-2-yl)propanoate monohydrate. Acta Crystallographica Section E: Structure Reports Online, 2010, 66, o1427-o1427.	0.2	O
86	Two tetrakis (benzoylacetonato) lanthanide species: synthesis, characterization and structures of tetrakis (benzoylacetonato) cerium (IV) and triethylammonium tetrakis (benzoylacetonato) lanthanate (III) tetrahydrate. Journal of Coordination Chemistry, 2009, 62, 2698-2708.	0.8	7
87	The influence of molecular dipoles on crystal packing of triacylmethanes. Acta Crystallographica Section A: Foundations and Advances, 2009, 65, s293-s293.	0.3	O
88	Partial ordering of tripivaloylmethane at 110â€K. Acta Crystallographica Section C: Crystal Structure Communications, 2008, 64, o450-o452.	0.4	2
89	Conformational enantiomeric disorder in tripivaloylmethane. Acta Crystallographica Section C: Crystal Structure Communications, 2007, 63, o353-o354.	0.4	2
90	Tetrapyridinecopper(I) hexafluoridophosphate(V). Acta Crystallographica Section E: Structure Reports Online, 2007, 63, m1734-m1734.	0.2	2

#	Article	IF	CITATIONS
91	p-Cresyl cinnamate. Acta Crystallographica Section E: Structure Reports Online, 2007, 63, 04347-04347.	0.2	1
92	Diisopropyl terephthalate. Acta Crystallographica Section E: Structure Reports Online, 2007, 63, o4487-o4487.	0.2	0
93	The first adduct of bis(1,3-diphenyl-1,3-propanedionato)oxovanadium(IV). Acta Crystallographica Section E: Structure Reports Online, 2004, 60, m1920-m1922.	0.2	4