
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4494380/publications.pdf Version: 2024-02-01

Рлімл Россні

#	Article	IF	CITATIONS
1	Menin inhibition suppresses castration-resistant prostate cancer and enhances chemosensitivity. Oncogene, 2022, 41, 125-137.	5.9	10
2	Nucleic Acid-Based Technologies Targeting Coronaviruses. Trends in Biochemical Sciences, 2021, 46, 351-365.	7.5	35
3	Nanovectorization of Prostate Cancer Treatment Strategies: A New Approach to Improved Outcomes. Pharmaceutics, 2021, 13, 591.	4.5	9
4	Nucleoside-Lipid-Based Nanoparticles for Phenazine Delivery: A New Therapeutic Strategy to Disrupt Hsp27-elF4E Interaction in Castration Resistant Prostate Cancer. Pharmaceutics, 2021, 13, 623.	4.5	4
5	Antisense Oligonucleotide-Based Therapeutic against Menin for Triple-Negative Breast Cancer Treatment. Biomedicines, 2021, 9, 795.	3.2	5
6	Hydrogel based lipid-oligonucleotides: a new route to self-delivery of therapeutic sequences. Biomaterials Science, 2021, 9, 3638-3644.	5.4	5
7	Enhanced Antisense Oligonucleotide Delivery Using Cationic Liposomes Grafted with Trastuzumab: A Proof-of-Concept Study in Prostate Cancer. Pharmaceutics, 2020, 12, 1166.	4.5	15
8	Coronavirus RNA Proofreading: Molecular Basis and Therapeutic Targeting. Molecular Cell, 2020, 79, 710-727.	9.7	326
9	Self-assembly of amphiphilic phospholipid peptide dendrimer-based nanovectors for effective delivery of siRNA therapeutics in prostate cancer therapy. Journal of Controlled Release, 2020, 322, 416-425.	9.9	49
10	Integrative proteomic and phosphoproteomic profiling of prostate cell lines. PLoS ONE, 2019, 14, e0224148.	2.5	14
11	PSMA-Targeted Radionuclide Therapy and Salivary Gland Toxicity: Why Does It Matter?. Journal of Nuclear Medicine, 2018, 59, 747-748.	5.0	58
12	A Dual Targeting Dendrimer-Mediated siRNA Delivery System for Effective Gene Silencing in Cancer Therapy. Journal of the American Chemical Society, 2018, 140, 16264-16274.	13.7	159
13	Lipid-oligonucleotide conjugates improve cellular uptake and efficiency of TCTP-antisense in castration-resistant prostate cancer. Journal of Controlled Release, 2017, 258, 1-9.	9.9	45
14	TCTP Has a Crucial Role in the Different Stages of Prostate Cancer Malignant Progression. Results and Problems in Cell Differentiation, 2017, 64, 255-261.	0.7	7
15	Targeting Hsp27/elF4E interaction with phenazine compound: a promising alternative for castration-resistant prostate cancer treatment. Oncotarget, 2017, 8, 77317-77329.	1.8	7
16	Mastering Dendrimer Selfâ€Assembly for Efficient siRNA Delivery: From Conceptual Design to In Vivo Efficient Gene Silencing. Small, 2016, 12, 3667-3676.	10.0	78
17	Inherent and Tumor-Driven Immune Tolerance in the Prostate Microenvironment Impairs Natural Killer Cell Antitumor Activity. Cancer Research, 2016, 76, 2153-2165.	0.9	154
18	siRNA Delivery: Mastering Dendrimer Self-Assembly for Efficient siRNA Delivery: From Conceptual Design to In Vivo Efficient Gene Silencing (Small 27/2016). Small, 2016, 12, 3604-3604.	10.0	3

#	Article	IF	CITATIONS
19	A Fluorinated Bolaâ€Amphiphilic Dendrimer for Onâ€Demand Delivery of siRNA, via Specific Response to Reactive Oxygen Species. Advanced Functional Materials, 2016, 26, 8594-8603.	14.9	56
20	Highly effective NK cells are associated with good prognosis in patients with metastatic prostate cancer. Oncotarget, 2015, 6, 14360-14373.	1.8	164
21	Microwave promoted C–O coupling for synthesizing O-aryloxytriazole nucleoside analogues. New Journal of Chemistry, 2015, 39, 3889-3893.	2.8	4
22	Hsp27 Inhibition with OGX-427 Sensitizes Non–Small Cell Lung Cancer Cells to Erlotinib and Chemotherapy. Molecular Cancer Therapeutics, 2015, 14, 1107-1116.	4.1	43
23	The hallmarks of castration-resistant prostate cancers. Cancer Treatment Reviews, 2015, 41, 588-597.	7.7	89
24	Anticancer drug nanomicelles formed by self-assembling amphiphilic dendrimer to combat cancer drug resistance. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 2978-2983.	7.1	318
25	2,3-Dialkoxyphenazines as anticancer agents. Tetrahedron Letters, 2015, 56, 2695-2698.	1.4	8
26	Promoting siRNA delivery via enhanced cellular uptake using an arginine-decorated amphiphilic dendrimer. Nanoscale, 2015, 7, 3867-3875.	5.6	81
27	The Eukaryotic Translation Initiation Factor 4E (eIF4E) as a Therapeutic Target for Cancer. Advances in Protein Chemistry and Structural Biology, 2015, 101, 1-26.	2.3	31
28	Heat shock protein 27 phosphorylation state is associated with cancer progression. Frontiers in Genetics, 2014, 5, 346.	2.3	97
29	The Functional Landscape of Hsp27 Reveals New Cellular Processes such as DNA Repair and Alternative Splicing and Proposes Novel Anticancer Targets. Molecular and Cellular Proteomics, 2014, 13, 3585-3601.	3.8	65
30	Adaptive Amphiphilic Dendrimerâ€Based Nanoassemblies as Robust and Versatile siRNA Delivery Systems. Angewandte Chemie - International Edition, 2014, 53, 11822-11827.	13.8	181
31	Structurally flexible triethanolamine-core poly(amidoamine) dendrimers as effective nanovectors to deliver RNAi-based therapeutics. Biotechnology Advances, 2014, 32, 844-852.	11.7	56
32	Regulation of the proapoptotic functions of prostate apoptosis response-4 (Par-4) by casein kinase 2 in prostate cancer cells. Cell Death and Disease, 2014, 5, e1016-e1016.	6.3	19
33	Arginine-Terminated Generation 4 PAMAM Dendrimer as an Effective Nanovector for Functional siRNA Delivery in Vitro and in Vivo. Bioconjugate Chemistry, 2014, 25, 521-532.	3.6	95
34	Targeted delivery of Dicer-substrate siRNAs using a dual targeting peptide decorated dendrimer delivery system. Nanomedicine: Nanotechnology, Biology, and Medicine, 2014, 10, 1627-1636.	3.3	44
35	TCTP as therapeutic target in cancers. Cancer Treatment Reviews, 2014, 40, 760-769.	7.7	83
36	Hsp27 as a Therapeutic Target in Cancers. Current Drug Targets, 2014, 15, 423-431.	2.1	45

#	Article	IF	CITATIONS
37	Highly functional natural killer (NK) cells as predictive biomarkers associated with long response to castration in newly diagnosed metastatic prostate cancer Journal of Clinical Oncology, 2014, 32, 95-95.	1.6	0
38	Impact of siRNA Overhangs for Dendrimer-Mediated siRNA Delivery and Gene Silencing. Molecular Pharmaceutics, 2013, 10, 3262-3273.	4.6	43
39	Efficient delivery of therapeutic small nucleic acids to prostate cancer cells using ketal nucleoside lipid nanoparticles. Journal of Controlled Release, 2013, 172, 954-961.	9.9	24
40	Development of an ELISA detecting Tumor Protein 53-Induced Nuclear Protein 1 in serum of prostate cancer patients. Results in Immunology, 2013, 3, 51-56.	2.2	5
41	Poly(amidoamine) (Pamam) Dendrimers as Nonâ€viral Vectors for the Delivery of RNA Therapeutics. , 2013, , 73-83.		1
42	Targeting TCTP as a New Therapeutic Strategy in Castration-resistant Prostate Cancer. Molecular Therapy, 2012, 20, 2244-2256.	8.2	71
43	Dendrimers as non-viral vectors for siRNA delivery. New Journal of Chemistry, 2012, 36, 256-263.	2.8	89
44	Small heat shock proteins HSP27 (HspB1), αB-crystallin (HspB5) and HSP22 (HspB8) as regulators of cell death. International Journal of Biochemistry and Cell Biology, 2012, 44, 1622-1631.	2.8	240
45	Targeting heat shock factor 1 with a triazole nucleoside analog to elicit potent anticancer activity on drug-resistant pancreatic cancer. Cancer Letters, 2012, 318, 145-153.	7.2	56
46	TP53INP1 overexpression in prostate cancer correlates with poor prognostic factors and is predictive of biological cancer relapse. Prostate, 2012, 72, 117-128.	2.3	19
47	TP53INP1 as new therapeutic target in castrationâ€resistant prostate cancer. Prostate, 2012, 72, 1286-1294.	2.3	10
48	A Novel Bitriazolyl Acyclonucleoside Endowed with Dual Antiproliferative and Immunomodulatory Activity. Journal of Medicinal Chemistry, 2012, 55, 5642-5646.	6.4	25
49	Efficient Delivery of Sticky siRNA and Potent Gene Silencing in a Prostate Cancer Model Using a Generation 5 Triethanolamine-Core PAMAM Dendrimer. Molecular Pharmaceutics, 2012, 9, 470-481.	4.6	102
50	An Amphiphilic Dendrimer for Effective Delivery of Small Interfering RNA and Gene Silencing Inâ€Vitro and Inâ€Vivo. Angewandte Chemie - International Edition, 2012, 51, 8478-8484.	13.8	220
51	Targeting heat shock response pathways to treat pancreatic cancer. Drug Discovery Today, 2012, 17, 35-43.	6.4	40
52	An Efficient Mixedâ€Ligand Pd Catalytic System to Promote Cĩ£¿N Coupling for the Synthesis of <i>N</i> â€Arylaminotriazole Nucleosides. Chemistry - A European Journal, 2012, 18, 2221-2225.	3.3	22
53	OCX-427 inhibits tumor progression and enhances gemcitabine chemotherapy in pancreatic cancer. Cell Death and Disease, 2011, 2, e221-e221.	6.3	87
54	Active-Targeted Nanotherapy Strategies for Prostate Cancer. Current Cancer Drug Targets, 2011, 11, 954-965.	1.6	20

#	Article	IF	CITATIONS
55	N-Aryltriazole ribonucleosides with potent antiproliferative activity against drug-resistant pancreatic cancer. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 2503-2507.	2.2	25
56	A novel arylethynyltriazole acyclonucleoside inhibits proliferation of drug-resistant pancreatic cancer cells. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 5979-5983.	2.2	24
57	Heat shock protein 27 confers resistance to androgen ablation and chemotherapy in prostate cancer cells through eIF4E. Oncogene, 2010, 29, 1883-1896.	5.9	120
58	Ligand-Mediated Highly Effective and Selective Câ^'N Coupling for Synthesizing BioactiveN-Aryltriazole Acyclonucleosides. Organic Letters, 2010, 12, 5712-5715.	4.6	14
59	Cuâ€Mediated Selective <i>N</i> â€Arylation of Aminotriazole Acyclonucleosides. Helvetica Chimica Acta, 2009, 92, 1503-1513.	1.6	20
60	PAMAM Dendrimers Mediate siRNA Delivery to Target Hsp27 and Produce Potent Antiproliferative Effects on Prostate Cancer Cells. ChemMedChem, 2009, 4, 1302-1310.	3.2	116
61	Botulinum Toxin Type A Inhibits the Growth of LNCaP Human Prostate Cancer Cells In Vitro and In Vivo. Prostate, 2009, 69, 1143-1150.	2.3	51
62	Discovery of Novel Arylethynyltriazole Ribonucleosides with Selective and Effective Antiviral and Antiproliferative Activity. Journal of Medicinal Chemistry, 2009, 52, 1144-1155.	6.4	56
63	Novel Triazole Ribonucleoside Down-Regulates Heat Shock Protein 27 and Induces Potent Anticancer Activity on Drug-Resistant Pancreatic Cancer. Journal of Medicinal Chemistry, 2009, 52, 6083-6096.	6.4	95
64	Tumor protein 53-induced nuclear protein 1 expression is repressed by miR-155, and its restoration inhibits pancreatic tumor development. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 16170-16175.	7.1	513
65	Hsp27 knockdown using nucleotide-based therapies inhibit tumor growth and enhance chemotherapy in human bladder cancer cells. Molecular Cancer Therapeutics, 2007, 6, 299-308.	4.1	176
66	A5-06: Heat shock protein 27 - a novel target for non-small cell lung cancer and possible marker of metastasis. Journal of Thoracic Oncology, 2007, 2, S325.	1.1	0
67	355 POSTER Heat shock protein 27 down-regulation inhibits tumor progression and enhances gemzar chemotherapy in pancreatic cancer through activation of stat-3 signaling pathway. European Journal of Cancer, Supplement, 2006, 4, 110.	2.2	0
68	Induction of apoptosis and enhancement of chemosensitivity in human prostate cancer LNCaP cells using bispecific antisense oligonucleotide targeting Bcl-2 and Bcl-xL genes. BJU International, 2006, 97, 1300-1308.	2.5	63
69	Small interference RNA targeting heat-shock protein 27 inhibits the growth of prostatic cell lines and induces apoptosis via caspase-3 activation in vitro. BJU International, 2006, 98, 1082-1089.	2.5	116
70	Antisense oligonucleotide therapy in the management of bladder cancer. Current Opinion in Urology, 2005, 15, 320-327.	1.8	15
71	Inactivation of stress protein p8 increases murine carbon tetrachloride hepatotoxicity via preserved CYP2E1 activity. Hepatology, 2005, 42, 176-182.	7.3	51
72	Increased Hsp27 after Androgen Ablation Facilitates Androgen-Independent Progression in Prostate Cancer via Signal Transducers and Activators of Transcription 3–Mediated Suppression of Apoptosis. Cancer Research, 2005, 65, 11083-11093.	0.9	204

#	Article	IF	CITATIONS
73	Molecular profile of androgen-independent prostate cancer xenograft LuCaP 23.1. Journal of Steroid Biochemistry and Molecular Biology, 2005, 96, 355-365.	2.5	5
74	A novel antisense oligonucleotide inhibiting several antiapoptotic Bcl-2 family members induces apoptosis and enhances chemosensitivity in androgen-independent human prostate cancer PC3 cells. Molecular Cancer Therapeutics, 2005, 4, 1689-1698.	4.1	98
75	Heat Shock Protein 27 Increases after Androgen Ablation and Plays a Cytoprotective Role in Hormone-Refractory Prostate Cancer. Cancer Research, 2004, 64, 6595-6602.	0.9	285
76	Molecular analysis integrating different pathways associated with androgen-independent progression in LuCaP 23.1 xenograft. Oncogene, 2004, 23, 9111-9119.	5.9	26