
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4494380/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Tumor protein 53-induced nuclear protein 1 expression is repressed by miR-155, and its restoration inhibits pancreatic tumor development. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 16170-16175.	3.3	513
2	Coronavirus RNA Proofreading: Molecular Basis and Therapeutic Targeting. Molecular Cell, 2020, 79, 710-727.	4.5	326
3	Anticancer drug nanomicelles formed by self-assembling amphiphilic dendrimer to combat cancer drug resistance. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 2978-2983.	3.3	318
4	Heat Shock Protein 27 Increases after Androgen Ablation and Plays a Cytoprotective Role in Hormone-Refractory Prostate Cancer. Cancer Research, 2004, 64, 6595-6602.	0.4	285
5	Small heat shock proteins HSP27 (HspB1), αB-crystallin (HspB5) and HSP22 (HspB8) as regulators of cell death. International Journal of Biochemistry and Cell Biology, 2012, 44, 1622-1631.	1.2	240
6	An Amphiphilic Dendrimer for Effective Delivery of Small Interfering RNA and Gene Silencing Inâ€Vitro and Inâ€Vivo. Angewandte Chemie - International Edition, 2012, 51, 8478-8484.	7.2	220
7	Increased Hsp27 after Androgen Ablation Facilitates Androgen-Independent Progression in Prostate Cancer via Signal Transducers and Activators of Transcription 3–Mediated Suppression of Apoptosis. Cancer Research, 2005, 65, 11083-11093.	0.4	204
8	Adaptive Amphiphilic Dendrimerâ€Based Nanoassemblies as Robust and Versatile siRNA Delivery Systems. Angewandte Chemie - International Edition, 2014, 53, 11822-11827.	7.2	181
9	Hsp27 knockdown using nucleotide-based therapies inhibit tumor growth and enhance chemotherapy in human bladder cancer cells. Molecular Cancer Therapeutics, 2007, 6, 299-308.	1.9	176
10	Highly effective NK cells are associated with good prognosis in patients with metastatic prostate cancer. Oncotarget, 2015, 6, 14360-14373.	0.8	164
11	A Dual Targeting Dendrimer-Mediated siRNA Delivery System for Effective Gene Silencing in Cancer Therapy. Journal of the American Chemical Society, 2018, 140, 16264-16274.	6.6	159
12	Inherent and Tumor-Driven Immune Tolerance in the Prostate Microenvironment Impairs Natural Killer Cell Antitumor Activity. Cancer Research, 2016, 76, 2153-2165.	0.4	154
13	Heat shock protein 27 confers resistance to androgen ablation and chemotherapy in prostate cancer cells through eIF4E. Oncogene, 2010, 29, 1883-1896.	2.6	120
14	Small interference RNA targeting heat-shock protein 27 inhibits the growth of prostatic cell lines and induces apoptosis via caspase-3 activation in vitro. BJU International, 2006, 98, 1082-1089.	1.3	116
15	PAMAM Dendrimers Mediate siRNA Delivery to Target Hsp27 and Produce Potent Antiproliferative Effects on Prostate Cancer Cells. ChemMedChem, 2009, 4, 1302-1310.	1.6	116
16	Efficient Delivery of Sticky siRNA and Potent Gene Silencing in a Prostate Cancer Model Using a Generation 5 Triethanolamine-Core PAMAM Dendrimer. Molecular Pharmaceutics, 2012, 9, 470-481.	2.3	102
17	A novel antisense oligonucleotide inhibiting several antiapoptotic Bcl-2 family members induces apoptosis and enhances chemosensitivity in androgen-independent human prostate cancer PC3 cells. Molecular Cancer Therapeutics, 2005, 4, 1689-1698.	1.9	98
18	Heat shock protein 27 phosphorylation state is associated with cancer progression. Frontiers in Genetics, 2014, 5, 346.	1.1	97

#	Article	IF	CITATIONS
19	Novel Triazole Ribonucleoside Down-Regulates Heat Shock Protein 27 and Induces Potent Anticancer Activity on Drug-Resistant Pancreatic Cancer. Journal of Medicinal Chemistry, 2009, 52, 6083-6096.	2.9	95
20	Arginine-Terminated Generation 4 PAMAM Dendrimer as an Effective Nanovector for Functional siRNA Delivery in Vitro and in Vivo. Bioconjugate Chemistry, 2014, 25, 521-532.	1.8	95
21	Dendrimers as non-viral vectors for siRNA delivery. New Journal of Chemistry, 2012, 36, 256-263.	1.4	89
22	The hallmarks of castration-resistant prostate cancers. Cancer Treatment Reviews, 2015, 41, 588-597.	3.4	89
23	OCX-427 inhibits tumor progression and enhances gemcitabine chemotherapy in pancreatic cancer. Cell Death and Disease, 2011, 2, e221-e221.	2.7	87
24	TCTP as therapeutic target in cancers. Cancer Treatment Reviews, 2014, 40, 760-769.	3.4	83
25	Promoting siRNA delivery via enhanced cellular uptake using an arginine-decorated amphiphilic dendrimer. Nanoscale, 2015, 7, 3867-3875.	2.8	81
26	Mastering Dendrimer Selfâ€Assembly for Efficient siRNA Delivery: From Conceptual Design to In Vivo Efficient Gene Silencing. Small, 2016, 12, 3667-3676.	5.2	78
27	Targeting TCTP as a New Therapeutic Strategy in Castration-resistant Prostate Cancer. Molecular Therapy, 2012, 20, 2244-2256.	3.7	71
28	The Functional Landscape of Hsp27 Reveals New Cellular Processes such as DNA Repair and Alternative Splicing and Proposes Novel Anticancer Targets. Molecular and Cellular Proteomics, 2014, 13, 3585-3601.	2.5	65
29	Induction of apoptosis and enhancement of chemosensitivity in human prostate cancer LNCaP cells using bispecific antisense oligonucleotide targeting Bcl-2 and Bcl-xL genes. BJU International, 2006, 97, 1300-1308.	1.3	63
30	PSMA-Targeted Radionuclide Therapy and Salivary Gland Toxicity: Why Does It Matter?. Journal of Nuclear Medicine, 2018, 59, 747-748.	2.8	58
31	Discovery of Novel Arylethynyltriazole Ribonucleosides with Selective and Effective Antiviral and Antiproliferative Activity. Journal of Medicinal Chemistry, 2009, 52, 1144-1155.	2.9	56
32	Targeting heat shock factor 1 with a triazole nucleoside analog to elicit potent anticancer activity on drug-resistant pancreatic cancer. Cancer Letters, 2012, 318, 145-153.	3.2	56
33	Structurally flexible triethanolamine-core poly(amidoamine) dendrimers as effective nanovectors to deliver RNAi-based therapeutics. Biotechnology Advances, 2014, 32, 844-852.	6.0	56
34	A Fluorinated Bolaâ€Amphiphilic Dendrimer for Onâ€Demand Delivery of siRNA, via Specific Response to Reactive Oxygen Species. Advanced Functional Materials, 2016, 26, 8594-8603.	7.8	56
35	Inactivation of stress protein p8 increases murine carbon tetrachloride hepatotoxicity via preserved CYP2E1 activity. Hepatology, 2005, 42, 176-182.	3.6	51
36	Botulinum Toxin Type A Inhibits the Growth of LNCaP Human Prostate Cancer Cells In Vitro and In Vivo. Prostate, 2009, 69, 1143-1150.	1.2	51

#	Article	IF	CITATIONS
37	Self-assembly of amphiphilic phospholipid peptide dendrimer-based nanovectors for effective delivery of siRNA therapeutics in prostate cancer therapy. Journal of Controlled Release, 2020, 322, 416-425.	4.8	49
38	Lipid-oligonucleotide conjugates improve cellular uptake and efficiency of TCTP-antisense in castration-resistant prostate cancer. Journal of Controlled Release, 2017, 258, 1-9.	4.8	45
39	Hsp27 as a Therapeutic Target in Cancers. Current Drug Targets, 2014, 15, 423-431.	1.0	45
40	Targeted delivery of Dicer-substrate siRNAs using a dual targeting peptide decorated dendrimer delivery system. Nanomedicine: Nanotechnology, Biology, and Medicine, 2014, 10, 1627-1636.	1.7	44
41	Impact of siRNA Overhangs for Dendrimer-Mediated siRNA Delivery and Gene Silencing. Molecular Pharmaceutics, 2013, 10, 3262-3273.	2.3	43
42	Hsp27 Inhibition with OGX-427 Sensitizes Non–Small Cell Lung Cancer Cells to Erlotinib and Chemotherapy. Molecular Cancer Therapeutics, 2015, 14, 1107-1116.	1.9	43
43	Targeting heat shock response pathways to treat pancreatic cancer. Drug Discovery Today, 2012, 17, 35-43.	3.2	40
44	Nucleic Acid-Based Technologies Targeting Coronaviruses. Trends in Biochemical Sciences, 2021, 46, 351-365.	3.7	35
45	The Eukaryotic Translation Initiation Factor 4E (eIF4E) as a Therapeutic Target for Cancer. Advances in Protein Chemistry and Structural Biology, 2015, 101, 1-26.	1.0	31
46	Molecular analysis integrating different pathways associated with androgen-independent progression in LuCaP 23.1 xenograft. Oncogene, 2004, 23, 9111-9119.	2.6	26
47	N-Aryltriazole ribonucleosides with potent antiproliferative activity against drug-resistant pancreatic cancer. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 2503-2507.	1.0	25
48	A Novel Bitriazolyl Acyclonucleoside Endowed with Dual Antiproliferative and Immunomodulatory Activity. Journal of Medicinal Chemistry, 2012, 55, 5642-5646.	2.9	25
49	A novel arylethynyltriazole acyclonucleoside inhibits proliferation of drug-resistant pancreatic cancer cells. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 5979-5983.	1.0	24
50	Efficient delivery of therapeutic small nucleic acids to prostate cancer cells using ketal nucleoside lipid nanoparticles. Journal of Controlled Release, 2013, 172, 954-961.	4.8	24
51	An Efficient Mixedâ€Ligand Pd Catalytic System to Promote CN Coupling for the Synthesis of <i>N</i> â€Arylaminotriazole Nucleosides. Chemistry - A European Journal, 2012, 18, 2221-2225.	1.7	22
52	Cuâ€Mediated Selective <i>N</i> â€Arylation of Aminotriazole Acyclonucleosides. Helvetica Chimica Acta, 2009, 92, 1503-1513.	1.0	20
53	Active-Targeted Nanotherapy Strategies for Prostate Cancer. Current Cancer Drug Targets, 2011, 11, 954-965.	0.8	20
54	TP53INP1 overexpression in prostate cancer correlates with poor prognostic factors and is predictive of biological cancer relapse. Prostate, 2012, 72, 117-128.	1.2	19

#	Article	IF	CITATIONS
55	Regulation of the proapoptotic functions of prostate apoptosis response-4 (Par-4) by casein kinase 2 in prostate cancer cells. Cell Death and Disease, 2014, 5, e1016-e1016.	2.7	19
56	Antisense oligonucleotide therapy in the management of bladder cancer. Current Opinion in Urology, 2005, 15, 320-327.	0.9	15
57	Enhanced Antisense Oligonucleotide Delivery Using Cationic Liposomes Grafted with Trastuzumab: A Proof-of-Concept Study in Prostate Cancer. Pharmaceutics, 2020, 12, 1166.	2.0	15
58	Ligand-Mediated Highly Effective and Selective Câ^'N Coupling for Synthesizing BioactiveN-Aryltriazole Acyclonucleosides. Organic Letters, 2010, 12, 5712-5715.	2.4	14
59	Integrative proteomic and phosphoproteomic profiling of prostate cell lines. PLoS ONE, 2019, 14, e0224148.	1.1	14
60	TP53INP1 as new therapeutic target in castrationâ€resistant prostate cancer. Prostate, 2012, 72, 1286-1294.	1.2	10
61	Menin inhibition suppresses castration-resistant prostate cancer and enhances chemosensitivity. Oncogene, 2022, 41, 125-137.	2.6	10
62	Nanovectorization of Prostate Cancer Treatment Strategies: A New Approach to Improved Outcomes. Pharmaceutics, 2021, 13, 591.	2.0	9
63	2,3-Dialkoxyphenazines as anticancer agents. Tetrahedron Letters, 2015, 56, 2695-2698.	0.7	8
64	TCTP Has a Crucial Role in the Different Stages of Prostate Cancer Malignant Progression. Results and Problems in Cell Differentiation, 2017, 64, 255-261.	0.2	7
65	Targeting Hsp27/eIF4E interaction with phenazine compound: a promising alternative for castration-resistant prostate cancer treatment. Oncotarget, 2017, 8, 77317-77329.	0.8	7
66	Molecular profile of androgen-independent prostate cancer xenograft LuCaP 23.1. Journal of Steroid Biochemistry and Molecular Biology, 2005, 96, 355-365.	1.2	5
67	Development of an ELISA detecting Tumor Protein 53-Induced Nuclear Protein 1 in serum of prostate cancer patients. Results in Immunology, 2013, 3, 51-56.	2.2	5
68	Antisense Oligonucleotide-Based Therapeutic against Menin for Triple-Negative Breast Cancer Treatment. Biomedicines, 2021, 9, 795.	1.4	5
69	Hydrogel based lipid-oligonucleotides: a new route to self-delivery of therapeutic sequences. Biomaterials Science, 2021, 9, 3638-3644.	2.6	5
70	Microwave promoted C–O coupling for synthesizing O-aryloxytriazole nucleoside analogues. New Journal of Chemistry, 2015, 39, 3889-3893.	1.4	4
71	Nucleoside-Lipid-Based Nanoparticles for Phenazine Delivery: A New Therapeutic Strategy to Disrupt Hsp27-eIF4E Interaction in Castration Resistant Prostate Cancer. Pharmaceutics, 2021, 13, 623.	2.0	4
72	siRNA Delivery: Mastering Dendrimer Self-Assembly for Efficient siRNA Delivery: From Conceptual Design to In Vivo Efficient Gene Silencing (Small 27/2016). Small, 2016, 12, 3604-3604.	5.2	3

#	Article	IF	CITATIONS
73	Poly(amidoamine) (Pamam) Dendrimers as Nonâ€viral Vectors for the Delivery of RNA Therapeutics. , 2013, , 73-83.		1
74	355 POSTER Heat shock protein 27 down-regulation inhibits tumor progression and enhances gemzar chemotherapy in pancreatic cancer through activation of stat-3 signaling pathway. European Journal of Cancer, Supplement, 2006, 4, 110.	2.2	0
75	A5-06: Heat shock protein 27 - a novel target for non-small cell lung cancer and possible marker of metastasis. Journal of Thoracic Oncology, 2007, 2, S325.	0.5	0
76	Highly functional natural killer (NK) cells as predictive biomarkers associated with long response to castration in newly diagnosed metastatic prostate cancer Journal of Clinical Oncology, 2014, 32, 95-95.	0.8	0