
Enrica Gianotti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4494321/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Red Upconverter Nanocrystals Functionalized with Verteporfin for Photodynamic Therapy Triggered by Upconversion. International Journal of Molecular Sciences, 2022, 23, 6951.	4.1	2
2	Bifunctional hybrid organosiliceous catalysts for aldol condensation – hydrogenation tandem reactions of furfural in continuous-flow reactor. Applied Catalysis A: General, 2022, 643, 118710.	4.3	4
3	Rational design of bifunctional hierarchical Pd/SAPO-5 for the synthesis of tetrahydrofuran derivatives from furfural. Journal of Catalysis, 2021, 397, 75-89.	6.2	7
4	Predicting the Conformation of Organic Catalysts Grafted on Silica Surfaces with Different Numbers of Tethering Chains: The Silicopodality Concept. Journal of Physical Chemistry C, 2021, 125, 21199-21210.	3.1	2
5	Adsorption Features of Various Inorganic Materials for the Drug Removal from Water and Synthetic Urine Medium: A Multi-Technique Time-Resolved In Situ Investigation. Materials, 2021, 14, 6196.	2.9	3
6	Mesoporous Silica Nanoparticles Functionalized with Amino Groups for Biomedical Applications. ChemistryOpen, 2021, 10, 1251-1259.	1.9	15
7	Verteporfin-Loaded Mesoporous Silica Nanoparticles' Topical Applications Inhibit Mouse Melanoma Lymphangiogenesis and Micrometastasis In Vivo. International Journal of Molecular Sciences, 2021, 22, 13443.	4.1	6
8	Vis-NIR luminescent lanthanide-doped core-shell nanoparticles for imaging and photodynamic therapy. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 403, 112840.	3.9	4
9	The Significance of Metal Coordination in Imidazoleâ€Functionalized Metal–Organic Frameworks for Carbon Dioxide Utilization. Chemistry - A European Journal, 2020, 26, 13606-13610.	3.3	5
10	Probing the Design Rationale of a Highâ€Performing Faujasitic Zeotype Engineered to have Hierarchical Porosity and Moderated Acidity. Angewandte Chemie, 2020, 132, 19729-19737.	2.0	2
11	Probing the Design Rationale of a Highâ€Performing Faujasitic Zeotype Engineered to have Hierarchical Porosity and Moderated Acidity. Angewandte Chemie - International Edition, 2020, 59, 19561-19569.	13.8	11
12	A smart use of biomass derivatives to template an <i>ad hoc</i> hierarchical SAPO-5 acid catalyst. RSC Advances, 2020, 10, 38578-38582.	3.6	0
13	Verteporfin-loaded mesoporous silica nanoparticles inhibit mouse melanoma proliferation in vitro and in vivo. Journal of Photochemistry and Photobiology B: Biology, 2019, 197, 111533.	3.8	28
14	Integrated Theoretical and Empirical Studies for Probing Substrate–Framework Interactions in Hierarchical Catalysts. Chemistry - A European Journal, 2019, 25, 9938-9947.	3.3	7
15	Influence of Silicodactyly in the Preparation of Hybrid Materials. Molecules, 2019, 24, 848.	3.8	5
16	Acid properties of organosiliceous hybrid materials based on pendant (fluoro)aryl-sulfonic groups through a spectroscopic study with probe molecules. Catalysis Science and Technology, 2019, 9, 6308-6317.	4.1	1
17	Hybrid catalysts based on N-heterocyclic carbene anchored on hierarchical zeolites. RSC Advances, 2019, 9, 35336-35344.	3.6	5
18	Hierarchical SAPOâ€34 Architectures with Tailored Acid Sites using Sustainable Sugar Templates. ChemistryOpen, 2018, 7, 297-301.	1.9	19

#	Article	IF	CITATIONS
19	Mesoporous silica nanoparticles incorporating squaraine-based photosensitizers: a combined experimental and computational approach. Dalton Transactions, 2018, 47, 3038-3046.	3.3	24
20	In Situ FT-IR Characterization of CuZnZr/Ferrierite Hybrid Catalysts for One-Pot CO2-to-DME Conversion. Materials, 2018, 11, 2275.	2.9	28
21	Combined solid-state NMR, FT-IR and computational studies on layered and porous materials. Chemical Society Reviews, 2018, 47, 5684-5739.	38.1	123
22	Mesoporous Silica Scaffolds as Precursor to Drive the Formation of Hierarchical SAPOâ€34 with Tunable Acid Properties. Chemistry - A European Journal, 2017, 23, 9952-9961.	3.3	38
23	Verteporfin based silica nanoparticle for in vitro selective inhibition of human highly invasive melanoma cell proliferation. Journal of Photochemistry and Photobiology B: Biology, 2017, 167, 1-6.	3.8	39
24	Facile synthesis of NIR and Visible luminescent Sm 3+ doped lutetium oxide nanoparticles. Materials Research Bulletin, 2017, 86, 220-227.	5.2	8
25	Creating Accessible Active Sites in Hierarchical MFI Zeolites for Lowâ€Temperature Acid Catalysis. ChemCatChem, 2016, 8, 3161-3169.	3.7	30
26	Verteporfin based silica nanoplatform for photodynamic therapy. ChemistrySelect, 2016, 1, 127-131.	1.5	9
27	Unraveling the Decomposition Process of Lead(II) Acetate: Anhydrous Polymorphs, Hydrates, and Byproducts and Room Temperature Phosphorescence. Inorganic Chemistry, 2016, 55, 8576-8586.	4.0	38
28	Optimized Rhodamine B labeled mesoporous silica nanoparticles as fluorescent scaffolds for the immobilization of photosensitizers: a theranostic platform for optical imaging and photodynamic therapy. Physical Chemistry Chemical Physics, 2016, 18, 9042-9052.	2.8	35
29	Rose Bengal incorporated in mesostructured silica nanoparticles: structural characterization, theoretical modeling and singlet oxygen delivery. Physical Chemistry Chemical Physics, 2015, 17, 26804-26812.	2.8	57
30	Highly effective design strategy for the heterogenisation of chemo- and enantioselective organocatalysts. Catalysis Science and Technology, 2015, 5, 660-665.	4.1	16
31	Rationalising the role of solid-acid sites in the design of versatile single-site heterogeneous catalysts for targeted acid-catalysed transformations. Chemical Science, 2014, 5, 1810-1819.	7.4	38
32	NIR Persistent Luminescence of Lanthanide Ion-Doped Rare-Earth Oxycarbonates: The Effect of Dopants. ACS Applied Materials & Interfaces, 2014, 6, 17346-17351.	8.0	59
33	An Efficient Rose Bengal Based Nanoplatform for Photodynamic Therapy. Chemistry - A European Journal, 2014, 20, 10921-10925.	3.3	75
34	Role of Isolated Acid Sites and Influence of Pore Diameter in the Low-Temperature Dehydration of Ethanol. ACS Catalysis, 2014, 4, 4161-4169.	11.2	39
35	Designing bifunctional acid–base mesoporous hybrid catalysts for cascade reactions. Catalysis Science and Technology, 2013, 3, 2677.	4.1	64
36	Investigating site-specific interactions and probing their role in modifying the acid-strength in framework architectures. Physical Chemistry Chemical Physics, 2013, 15, 13288.	2.8	15

#	Article	IF	CITATIONS
37	Toward Understanding the Catalytic Synergy in the Design of Bimetallic Molecular Sieves for Selective Aerobic Oxidations. Journal of the American Chemical Society, 2013, 135, 2915-2918.	13.7	41
38	Disentangling protein–silica interactions. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2012, 370, 1463-1477.	3.4	11
39	Strong Organic Bases as Building Blocks of Mesoporous Hybrid Catalysts for C-C Forming Bond Reactions. European Journal of Inorganic Chemistry, 2012, 2012, 5175-5185.	2.0	9
40	Ru _x Pt _y Sn _z cluster-derived nanoparticlecatalysts: spectroscopic investigation into the nature of active multinuclear single sites. Dalton Transactions, 2012, 41, 982-989.	3.3	15
41	Bright photoluminescent hybrid mesostructured silica nanoparticles. Physical Chemistry Chemical Physics, 2012, 14, 10015.	2.8	20
42	Hybrid organic–inorganic catalytic mesoporous materials with proton sponges as building blocks. Physical Chemistry Chemical Physics, 2011, 13, 11702.	2.8	18
43	Photoactive Ru Complex Embedded in Mesostructured MCM-41 Nanoparticles. Journal of Fluorescence, 2011, 21, 901-909.	2.5	8
44	Spectroscopic investigation into the nature of the active sites for epoxidation reactions using vanadium-based aluminophosphate catalysts. Microporous and Mesoporous Materials, 2011, 138, 167-175.	4.4	18
45	Engineering active sites for enhancing synergy in heterogeneous catalytic oxidations. Chemical Communications, 2011, 47, 517-519.	4.1	40
46	On the Compatibility Criteria for Protein Encapsulation inside Mesoporous Materials. ChemPhysChem, 2010, 11, 1757-1762.	2.1	12
47	Synergistic Behavior of Bimetallic Rhenium Cluster Catalysts: Spectroscopic Investigation into the Nature of the Active Site. Chemistry - A European Journal, 2010, 16, 8202-8209.	3.3	13
48	The role of isolated active centres in high-performance bioinspired selective oxidation catalysts. Chemical Communications, 2010, 46, 2805.	4.1	9
49	Coexistence of framework Co2+ and non framework Co0 in CoAPO-5. Microporous and Mesoporous Materials, 2009, 123, 91-99.	4.4	10
50	Photoactive Hybrid Nanomaterials: Indocyanine Immobilized in Mesoporous MCM-41 for "In-Cell― Bioimaging. ACS Applied Materials & Interfaces, 2009, 1, 678-687.	8.0	30
51	New Catalytic Liquid-Phase Ammoxidation Approach to the Preparation of Niacin (Vitamin) Tj ETQq1 1 0.78431	4 rg <u>B</u> Ţ /Ov	verlock 10 Tf
52	FTIR Study of Cobalt Containing Aluminophosphates with Chabasite Like Structure by Using CO and NO as Molecular Probes. Catalysis Letters, 2009, 133, 27-32.	2.6	6
53	Titanium–Silica Catalysts for the Production of Fully Epoxidised Fatty Acid Methyl Esters. Catalysis Letters, 2008, 122, 53-56.	2.6	28
54	The effect of silylation on titanium-containing silica catalysts for the epoxidation of functionalised molecules. Microporous and Mesoporous Materials, 2008, 111, 39-47.	4.4	47

#	Article	IF	CITATIONS
55	Active Biocatalysts Based on Pepsin Immobilized in Mesoporous SBA-15. Journal of Physical Chemistry C, 2008, 112, 18110-18116.	3.1	54
56	Challenges in biocatalysis: immobilization of pepsin in mesoporous silicates. Studies in Surface Science and Catalysis, 2008, 174, 1327-1330.	1.5	1
57	Understanding the Vibrational and Electronic Features of Ti(IV) Sites in Mesoporous Silicas by Integrated Ab Initio and Spectroscopic Investigations. Journal of Physical Chemistry C, 2007, 111, 4946-4955.	3.1	37
58	Ti(IV) Catalytic Centers Grafted on Different Siliceous Materials:  Spectroscopic and Catalytic Study. Journal of Physical Chemistry C, 2007, 111, 5083-5089.	3.1	64
59	In situ synchrotron small-angle X-ray scattering study of MCM-41 crystallisation using Gemini surfactants. Catalysis Today, 2007, 126, 203-210.	4.4	18
60	Epoxidation of unsaturated FAMEs obtained from vegetable source over Ti(IV)-grafted silica catalysts: A comparison between ordered and non-ordered mesoporous materials. Journal of Molecular Catalysis A, 2006, 250, 218-225.	4.8	78
61	Catalytic dehydrogenation of propane over cluster-derived Ir–Sn/SiO2 catalysts. Catalysis Letters, 2006, 112, 89-95.	2.6	26
62	CD3CN and NH3 interaction with Ti(IV) catalytic centres grafted on mesoporous MCM-41. Studies in Surface Science and Catalysis, 2005, , 311-320.	1.5	5
63	Unequivocal evidence of the presence of titanols in Ti-MCM-48 mesoporous materials. A combined diffuse reflectance UV-Vis-Nir and 29Si-MAS-NMR study. Research on Chemical Intermediates, 2004, 30, 871-877.	2.7	9
64	The surface acidity of mesoporous silicoaluminophosphates: A FTIR study. Studies in Surface Science and Catalysis, 2004, , 1498-1504.	1.5	4
65	Photoluminescence study of mesoporous MCM-41 and Ti-grafted MCM-41. Research on Chemical Intermediates, 2003, 29, 681-689.	2.7	3
66	Spectroscopic Characterization of Microporous Aluminophosphate Materials with Potential Application in Environmental Catalysis. ChemInform, 2003, 34, no.	0.0	0
67	Synthesis and surface properties of Ti-containing mesoporous aluminophosphates. A comparison with Ti-grafted mesoporous silica Ti-MCM-41. Inorganica Chimica Acta, 2003, 349, 259-264.	2.4	23
68	The identity of titanium centres in microporous aluminophosphates compared with Ti-MCM-41 mesoporous catalyst and titanosilsesquioxane dimer molecular complex: a spectroscopy study. Journal of Molecular Catalysis A, 2003, 204-205, 483-489.	4.8	46
69	Spectroscopic characterisation of microporous aluminophosphate materials with potential application in environmental catalysis. Catalysis Today, 2003, 77, 371-384.	4.4	33
70	Heterogeneous catalytic epoxidation of fatty acid methyl esters on titanium-grafted silicas. Green Chemistry, 2003, 5, 421.	9.0	82
71	Acidity of mesoporous aluminophosphates and silicas MCM-41. A combined FTIR and UV-Vis-NIR study. Studies in Surface Science and Catalysis, 2002, 142, 1419-1426.	1.5	8
72	Meso-ALPO prepared by thermal decomposition of the organic-inorganic composite: A FTIR study. Studies in Surface Science and Catalysis, 2002, , 417-422.	1.5	6

#	Article	IF	CITATIONS
73	NH3adsorption on MCM-41 and Ti-grafted MCM-41. FTIR, DR UV–Vis–NIR and photoluminescence studies. Physical Chemistry Chemical Physics, 2002, 4, 6109-6115.	2.8	60
74	14-O-05-Elucidating the nature and reactivity of cobalt ions in CoAPOs. A combined FTIR and EPR study of NO and NO2 adsorbed at 77K and 298K. Studies in Surface Science and Catalysis, 2001, , 178.	1.5	2
75	Innovative nanoporous materials: metal-aluminophosphates. Materials Science and Engineering C, 2001, 15, 219-229.	7.3	14
76	One-Step Synthesis of a Highly Active, Mesoporous, Titanium-Containing Silica by Using Bifunctional Templating. Chemistry - A European Journal, 2001, 7, 1437-1443.	3.3	101
77	Title is missing!. Catalysis Letters, 2001, 76, 21-26.	2.6	12
78	Spectroscopic and catalytic investigation of the NO reactivity on CoAPOs with chabasite-like structure. Studies in Surface Science and Catalysis, 2000, , 3005-3010.	1.5	9
79	A Spectroscopic Study of Group IV Transition Metal Incorporated Direct Templated Mesoporous Catalysts Part 1:Â A Comparison between Materials Synthesized Using Hydrophobic and Hydrophilic Ti Precursors. Journal of Physical Chemistry B, 2000, 104, 7102-7109.	2.6	39
80	ALPO-34 and SAPO-34 synthesized by using morpholine as templating agent. FTIR and FT-Raman studies of the host–guest and guest–guest interactions within the zeolitic framework. Microporous and Mesoporous Materials, 1999, 30, 145-153.	4.4	91
81	The interaction of NO with Co2+/Co3+ redox centres in CoAPOs catalysts: FTIR and UV–VIS investigations. Catalysis Today, 1999, 54, 547-552.	4.4	34
82	Acidic and basic sites in NaX and NaY faujasites investigated by NH3, CO2 and CO molecular probes. Research on Chemical Intermediates, 1999, 25, 77-93.	2.7	37
83	One-pot incorporation of titanium catalytic sites into mesoporous true liquid crystal templated (TLCT) silica. Chemical Communications, 1999, , 87-88.	4.1	22
84	Structure–functionality relationships of grafted Ti-MCM41 silicas. Spectroscopic and catalytic studies. Physical Chemistry Chemical Physics, 1999, 1, 585-592.	2.8	170
85	Vibrational Spectroscopy of NH4+Ions in Zeolitic Materials:Â An IR Study. Journal of Physical Chemistry B, 1997, 101, 10128-10135.	2.6	248
86	Probing the Titanium Sites in Tiâ^'MCM41 by Diffuse Reflectance and Photoluminescence UVâ^'Vis Spectroscopies. Journal of Physical Chemistry B, 1997, 101, 8836-8838.	2.6	210
87	Spectroscopic tools for probing the isolated titanium centres in MCM41 mesoporous catalysts. Nuovo Cimento Della Societa Italiana Di Fisica D - Condensed Matter, Atomic, Molecular and Chemical Physics, Biophysics, 1997, 19, 1707-1718.	0.4	22
88	A quantitative description of the active sites in the dehydrated acid catalyst HSAPO-34 for the conversion of methanol to olefins. Catalysis Letters, 1996, 41, 13-16.	2.6	101
89	Assessing the Br�nsted acidity of CoAPO-18 catalysts by using N2 as molecular probe. Catalysis Letters, 1996, 37, 107-111.	2.6	24

90 The Application of UV-Visible-NIR Spectroscopy to Oxides. , 0, , 51-94.