Erlend Kristiansen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4494205/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ice Nucleation and Antinucleation in Nature. Cryobiology, 2000, 41, 257-279.	0.3	330
2	The mechanism by which fish antifreeze proteins cause thermal hysteresis. Cryobiology, 2005, 51, 262-280.	0.3	185
3	Inhibition of Gas Hydrate Nucleation and Growth: Efficacy of an Antifreeze Protein from the Longhorn Beetle <i>Rhagium mordax</i> . Energy & Fuels, 2014, 28, 3666-3672.	2.5	90
4	lce nucleation in solutions and freeze-avoiding insects—homogeneous or heterogeneous?. Cryobiology, 2004, 48, 309-321.	0.3	78
5	Inorganic ions in cold-hardiness. Cryobiology, 2004, 48, 126-133.	0.3	63
6	Salt-induced enhancement of antifreeze protein activity: A salting-out effect. Cryobiology, 2008, 57, 122-129.	0.3	51
7	Structural characteristics of a novel antifreeze protein from the longhorn beetle Rhagium inquisitor. Insect Biochemistry and Molecular Biology, 2011, 41, 109-117.	1.2	51
8	Effect of freezing on the transmembrane distribution of ions in freeze-tolerant larvae of the wood fly Xylophagus cinctus (Diptera, Xylophagidae). Journal of Insect Physiology, 2001, 47, 585-592.	0.9	41
9	Hyperactive antifreeze proteins from longhorn beetles: Some structural insights. Journal of Insect Physiology, 2012, 58, 1502-1510.	0.9	37
10	Is the strategy for cold hardiness in insects determined by their water balance? A study on two closely related families of beetles: Cerambycidae and Chrysomelidae. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2008, 178, 977-984.	0.7	35
11	Antifreeze activity in the cerambycid beetle Rhagium inquisitor. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 1999, 169, 55-60.	0.7	31
12	Effect of ice fraction and dilution factor on the antifreeze activity in the hemolymph of the cerambycid beetle Rhagium inquisitor. Cryobiology, 2002, 44, 132-141.	0.3	29
13	Isolation and characterization of hemolymph antifreeze proteins from larvae of the longhorn beetle Rhagium inquisitor (L.). Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2005, 142, 90-97.	0.7	28
14	Cadmium is deposited in the gut content of larvae of the beetle Tenebrio molitor and involves a Cd-binding protein of the low cysteine type. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2008, 148, 217-222.	1.3	21
15	Physiological effects of hypercapnia in the deep-sea bivalve Acesta excavata (Fabricius, 1779) (Bivalvia;) Tj ETQq1	1 _{.0.} 7843	14 rgBT /Ov
16	Antifreeze activity enhancement by site directed mutagenesis on an antifreeze protein from the beetle <i>Rhagium mordax</i> . FEBS Letters, 2014, 588, 1767-1772.	1.3	18
17	Low thermodynamic but high kinetic stability of an antifreeze protein from <i>Rhagium mordax</i> . Protein Science, 2014, 23, 760-768.	3.1	12
18	Cold hardiness in relation to trace metal stress in the freeze-avoiding beetle Tenebrio molitor. Journal of Insect Physiology, 2006, 52, 846-853.	0.9	10

#	Article	IF	CITATIONS
19	The Siberian timberman Acanthocinus aedilis: a freeze-tolerant beetle with low supercooling points. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2009, 179, 563-568.	0.7	8
20	Do ice nucleating lipoproteins protect frozen insects against toxic chemical agents?. Journal of Insect Physiology, 2011, 57, 1123-1126.	0.9	7
21	Isolation and preliminary characterization of a Cd-binding protein from Tenebrio molitor (Coleoptera). Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2007, 145, 457-463.	1.3	4
22	Characteristics of Antifreeze Proteins. , 2020, , 9-41.		0
23	Thermal Hysteresis. , 2020, , 131-158.		0