Hongxia Hao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4493785/publications.pdf

Version: 2024-02-01

		759233	996975
17	716	12	15
papers	citations	h-index	g-index
20	20	20	896
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Can electric fields drive chemistry for an aqueous microdroplet?. Nature Communications, 2022, 13, 280.	12.8	102
2	NewtonNet: a Newtonian message passing network for deep learning of interatomic potentials and forces. , 2022, 1, 333-343.		42
3	A benchmark dataset for Hydrogen Combustion. Scientific Data, 2022, 9, 215.	5.3	6
4	Recent Advances for Improving the Accuracy, Transferability, and Efficiency of Reactive Force Fields. Journal of Chemical Theory and Computation, 2021, 17, 3237-3251.	5.3	41
5	Rýcktitelbild: Proton Traffic Jam: Effect of Nanoconfinement and Acid Concentration on Proton Hopping Mechanism (Angew. Chem. 48/2021). Angewandte Chemie, 2021, 133, 25788-25788.	2.0	0
6	Diels–Alder Reactions in Water Are Determined by Microsolvation. Nano Letters, 2020, 20, 606-611.	9.1	29
7	A Reactive Force Field with Coarse-Grained Electrons for Liquid Water. Journal of Physical Chemistry Letters, 2020, 11, 9240-9247.	4.6	18
8	Metal-insulator and magnetic phase diagram of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Ca</mml:mi><mml:r from auxiliary field quantum Monte Carlo and dynamical mean field theory. Physical Review B, 2020, 101, .</mml:r </mml:msub></mml:mrow></mml:math 	nn გ2 <td>nl:ṃn></td>	nl:ṃn>
9	QMCPACK: Advances in the development, efficiency, and application of auxiliary field and real-space variational and diffusion quantum Monte Carlo. Journal of Chemical Physics, 2020, 152, 174105.	3.0	80
10	Auxiliary field quantum Monte Carlo for multiband Hubbard models: Controlling the sign and phase problems to capture Hund's physics. Physical Review B, 2019, 99, .	3.2	8
11	Accurate Predictions of Electron Binding Energies of Dipole-Bound Anions via Quantum Monte Carlo Methods. Journal of Physical Chemistry Letters, 2018, 9, 6185-6190.	4.6	24
12	<tt>QMCPACK</tt> : an open source <i>ab initio</i> pquantum Monte Carlo package for the electronic structure of atoms, molecules and solids. Journal of Physics Condensed Matter, 2018, 30, 195901.	1.8	187
13	Colloidal synthesis of greigite nanoplates with controlled lateral size for electrochemical applications. Nanoscale, 2015, 7, 4171-4178.	5.6	31
14	Enhancement of the 808 nm Photothermal Effect of Gold Nanorods by Thiolâ€Induced Selfâ€Assembly. Particle and Particle Systems Characterization, 2014, 31, 788-793.	2.3	16
15	Dipâ€Coated Gold Nanoparticle Electrodes for Aqueousâ€Solutionâ€Processed Largeâ€Area Solar Cells. Advanced Energy Materials, 2014, 4, 1400135.	19.5	37
16	Selfâ€Assembly of Au ₁₅ into Singleâ€Clusterâ€Thick Sheets at the Interface of Two Miscible Highâ€Boiling Solvents. Angewandte Chemie - International Edition, 2013, 52, 9952-9955.	13.8	66
17	Proton Traffic Jam: Effect of Nanoconfinement and Acid Concentration on Proton Hopping Mechanism. Angewandte Chemie, 0, , .	2.0	2