Hongxia Hao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4493785/publications.pdf

Version: 2024-02-01

		759233	996975
17	716	12	15
papers	citations	h-index	g-index
20	20	20	896
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	<tt>QMCPACK</tt> : an open source <i>ab initio</i> placed in the electronic structure of atoms, molecules and solids. Journal of Physics Condensed Matter, 2018, 30, 195901.	1.8	187
2	Can electric fields drive chemistry for an aqueous microdroplet?. Nature Communications, 2022, 13, 280.	12.8	102
3	QMCPACK: Advances in the development, efficiency, and application of auxiliary field and real-space variational and diffusion quantum Monte Carlo. Journal of Chemical Physics, 2020, 152, 174105.	3.0	80
4	Selfâ€Assembly of Au ₁₅ into Singleâ€Clusterâ€Thick Sheets at the Interface of Two Miscible Highâ€Boiling Solvents. Angewandte Chemie - International Edition, 2013, 52, 9952-9955.	13.8	66
5	NewtonNet: a Newtonian message passing network for deep learning of interatomic potentials and forces., 2022, 1, 333-343.		42
6	Recent Advances for Improving the Accuracy, Transferability, and Efficiency of Reactive Force Fields. Journal of Chemical Theory and Computation, 2021, 17, 3237-3251.	5.3	41
7	Dipâ€Coated Gold Nanoparticle Electrodes for Aqueousâ€Solutionâ€Processed Largeâ€Area Solar Cells. Advanced Energy Materials, 2014, 4, 1400135.	19.5	37
8	Colloidal synthesis of greigite nanoplates with controlled lateral size for electrochemical applications. Nanoscale, 2015, 7, 4171-4178.	5.6	31
9	Diels–Alder Reactions in Water Are Determined by Microsolvation. Nano Letters, 2020, 20, 606-611.	9.1	29
10	Accurate Predictions of Electron Binding Energies of Dipole-Bound Anions via Quantum Monte Carlo Methods. Journal of Physical Chemistry Letters, 2018, 9, 6185-6190.	4.6	24
11	A Reactive Force Field with Coarse-Grained Electrons for Liquid Water. Journal of Physical Chemistry Letters, 2020, 11, 9240-9247.	4.6	18
12	Enhancement of the 808 nm Photothermal Effect of Gold Nanorods by Thiolâ€Induced Selfâ€Assembly. Particle and Particle Systems Characterization, 2014, 31, 788-793.	2.3	16
13	Metal-insulator and magnetic phase diagram of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Ca</mml:mi><mml:r 101.<="" 2020,="" and="" auxiliary="" b,="" carlo="" dynamical="" field="" from="" mean="" monte="" physical="" quantum="" review="" td="" theory.=""><td>nn</td><td>nl:mn>nl:</td></mml:r></mml:msub></mml:mrow></mml:math>	nn	nl:mn>nl:
14	Auxiliary field quantum Monte Carlo for multiband Hubbard models: Controlling the sign and phase problems to capture Hund's physics. Physical Review B, 2019, 99, .	3.2	8
15	A benchmark dataset for Hydrogen Combustion. Scientific Data, 2022, 9, 215.	5.3	6
16	Proton Traffic Jam: Effect of Nanoconfinement and Acid Concentration on Proton Hopping Mechanism. Angewandte Chemie, 0, , .	2.0	2
17	Rýcktitelbild: Proton Traffic Jam: Effect of Nanoconfinement and Acid Concentration on Proton Hopping Mechanism (Angew. Chem. 48/2021). Angewandte Chemie, 2021, 133, 25788-25788.	2.0	O