David Dubbeldam

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4493761/publications.pdf

Version: 2024-02-01

143 papers 9,198 citations

47 h-index

53939

49824 91 g-index

156 all docs

156 docs citations

156 times ranked 7244 citing authors

#	Article	IF	CITATIONS
1	The Influence of UiOâ€66 Metal–Organic Framework Structural Defects on Adsorption and Separation of Hexane Isomers. Chemistry - A European Journal, 2022, , .	1.7	2
2	Electro-osmotic Drag and Thermodynamic Properties of Water in Hydrated Nafion Membranes from Molecular Dynamics. Journal of Physical Chemistry C, 2022, 126, 8121-8133.	1.5	8
3	Recent advances in the continuous fractional component Monte Carlo methodology. Molecular Simulation, 2021, 47, 804-823.	0.9	38
4	Role of additives and solvents in the synthesis of chiral isoreticular MOF-74 topologies. Dalton Transactions, 2021, 50, 12159-12167.	1.6	4
5	Competitive Adsorption of Xylenes at Chemical Equilibrium in Zeolites. Journal of Physical Chemistry C, 2021, 125, 4155-4174.	1.5	11
6	Effect of Water Content on Thermodynamic Properties of Compressed Hydrogen. Journal of Chemical & Engineering Data, 2021, 66, 2071-2087.	1.0	8
7	New Features of the Open Source Monte Carlo Software Brick-CFCMC: Thermodynamic Integration and Hybrid Trial Moves. Journal of Chemical Information and Modeling, 2021, 61, 3752-3757.	2.5	14
8	Modifying the hydrophobic nature of MAF-6. Separation and Purification Technology, 2021, 277, 119422.	3.9	3
9	In situ visualization of loading-dependent water effects in a stable metal–organic framework. Nature Chemistry, 2020, 12, 186-192.	6.6	53
10	Effects of Framework Flexibility on the Adsorption and Diffusion of Aromatics in MFI-Type Zeolites. Journal of Physical Chemistry C, 2020, 124, 24488-24499.	1.5	16
11	Multiple linear regression and thermodynamic fluctuations are equivalent for computing thermodynamic derivatives from molecular simulation. Fluid Phase Equilibria, 2020, 523, 112785.	1.4	13
12	Adsorption of Aromatics in MFI-Type Zeolites: Experiments and Framework Flexibility in Monte Carlo Simulations. Journal of Physical Chemistry C, 2020, 124, 21782-21797.	1.5	9
13	Synthesis of Chiral MOFâ€₹4 Frameworks by Postâ€Synthetic Modification by Using an Amino Acid. Chemistry - A European Journal, 2020, 26, 13957-13965.	1.7	35
14	Multiple Free Energy Calculations from Single State Point Continuous Fractional Component Monte Carlo Simulation Using Umbrella Sampling. Journal of Chemical Theory and Computation, 2020, 16, 1757-1767.	2.3	9
15	Brick-CFCMC: Open Source Software for Monte Carlo Simulations of Phase and Reaction Equilibria Using the Continuous Fractional Component Method. Journal of Chemical Information and Modeling, 2020, 60, 2678-2682.	2.5	32
16	Using Aliphatic Alcohols to Tune Benzene Adsorption in MAFâ€6. Advanced Theory and Simulations, 2019, 2, 1900112.	1.3	1
17	Improving Ammonia Production Using Zeolites. Journal of Physical Chemistry C, 2019, 123, 18475-18481.	1.5	16
18	Water–Ethanol and Methanol–Ethanol Separations Using in Situ Confined Polymer Chains in a Metal–Organic Framework. ACS Applied Materials & Samp; Interfaces, 2019, 11, 41383-41393.	4.0	29

#	Article	IF	CITATIONS
19	Negative Thermal Expansion Design Strategies in a Diverse Series of Metal–Organic Frameworks. Advanced Functional Materials, 2019, 29, 1904669.	7.8	48
20	Design, Parameterization, and Implementation of Atomic Force Fields for Adsorption in Nanoporous Materials. Advanced Theory and Simulations, 2019, 2, 1900135.	1.3	41
21	Improving the accuracy of computing chemical potentials in CFCMC simulations. Molecular Physics, 2019, 117, 3493-3508.	0.8	15
22	Efficient Separation of Ethanol–Methanol and Ethanol–Water Mixtures Using ZIF-8 Supported on a Hierarchical Porous Mixed-Oxide Substrate. ACS Applied Materials & Samp; Interfaces, 2019, 11, 21126-21136.	4.0	26
23	Highlights of (bio-)chemical tools and visualization software for computational science. Current Opinion in Chemical Engineering, 2019, 23, 1-13.	3.8	7
24	Effect of truncating electrostatic interactions on predicting thermodynamic properties of water–methanol systems. Molecular Simulation, 2019, 45, 336-350.	0.9	17
25	Prediction of adsorption isotherms from breakthrough curves. Microporous and Mesoporous Materials, 2019, 277, 237-244.	2.2	36
26	Molecular simulation of the vapor-liquid equilibria of xylene mixtures: Force field performance, and Wolf vs. Ewald for electrostatic interactions. Fluid Phase Equilibria, 2019, 485, 239-247.	1.4	6
27	On flexible force fields for metal–organic frameworks: Recent developments and future prospects. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2018, 8, e1363.	6.2	49
28	iRASPA: GPU-accelerated visualization software for materials scientists. Molecular Simulation, 2018, 44, 653-676.	0.9	112
29	Selective CO ₂ adsorption in water-stable alkaline-earth based metal–organic frameworks. Inorganic Chemistry Frontiers, 2018, 5, 541-549.	3.0	11
30	Adsorption equilibrium of nitrogen dioxide in porous materials. Physical Chemistry Chemical Physics, 2018, 20, 4189-4199.	1.3	20
31	Absorption Refrigeration Cycles with Ammonia–lonic Liquid Working Pairs Studied by Molecular Simulation. Industrial &	1.8	39
32	Mechanical Properties in Metal–Organic Frameworks: Emerging Opportunities and Challenges for Device Functionality and Technological Applications. Advanced Materials, 2018, 30, e1704124.	11.1	165
33	Chemical potentials of water, methanol, carbon dioxide and hydrogen sulphide at low temperatures using continuous fractional component Gibbs ensemble Monte Carlo. Molecular Simulation, 2018, 44, 405-414.	0.9	17
34	Potential of polarizable force fields for predicting the separation performance of small hydrocarbons in M-MOF-74. Physical Chemistry Chemical Physics, 2018, 20, 28848-28859.	1.3	18
35	Diffusion Patterns in Zeolite MFI: The Cation Effect. Journal of Physical Chemistry C, 2018, 122, 29274-29284.	1.5	6
36	Polarizable Force Field for CO ₂ in M-MOF-74 Derived from Quantum Mechanics. Journal of Physical Chemistry C, 2018, 122, 24488-24498.	1.5	29

3

#	Article	IF	CITATIONS
37	Computation of partial molar properties using continuous fractional component Monte Carlo. Molecular Physics, 2018, 116, 3331-3344.	0.8	28
38	Elucidating the Variable-Temperature Mechanical Properties of a Negative Thermal Expansion Metal–Organic Framework. ACS Applied Materials & 1, 21079-21083.	4.0	27
39	Polarizable Force Fields for CO ₂ and CH ₄ Adsorption in M-MOF-74. Journal of Physical Chemistry C, 2017, 121, 4659-4673.	1.5	87
40	Effective Model for Olefin/Paraffin Separation using (Co, Fe, Mn, Ni)â€MOFâ€₹4. ChemistrySelect, 2017, 2, 665-672.	0.7	16
41	Behavior of the Enthalpy of Adsorption in Nanoporous Materials Close to Saturation Conditions. Journal of Chemical Theory and Computation, 2017, 13, 3326-3339.	2.3	41
42	Computation of thermodynamic properties in the continuous fractional component Monte Carlo Gibbs ensemble. Molecular Simulation, 2017, 43, 189-195.	0.9	20
43	Product shape selectivity of MFI-type, MEL-type, and BEA-type zeolites in the catalytic hydroconversion of heptane. Journal of Catalysis, 2017, 353, 54-62.	3.1	44
44	Efficient Application of Continuous Fractional Component Monte Carlo in the Reaction Ensemble. Journal of Chemical Theory and Computation, 2017, 13, 4452-4466.	2.3	37
45	Flexible Force Field Parameterization through Fitting on the Ab Initio-Derived Elastic Tensor. Journal of Chemical Theory and Computation, 2017, 13, 3722-3730.	2.3	13
46	Solubility of sulfur compounds in commercial physical solvents and an ionic liquid from Monte Carlo simulations. Fluid Phase Equilibria, 2017, 433, 50-55.	1.4	29
47	Investigating polarization effects of CO2 adsorption in MgMOF-74. Journal of Computational Science, 2016, 15, 86-94.	1.5	25
48	Optimization of Particle Transfers in the Gibbs Ensemble for Systems with Strong and Directional Interactions Using CBMC, CFCMC, and CB/CFCMC. Journal of Physical Chemistry C, 2016, 120, 9148-9159.	1.5	18
49	Controlling Thermal Expansion: A Metal–Organic Frameworks Route. Chemistry of Materials, 2016, 28, 8296-8304.	3.2	42
50	Predicting Multicomponent Adsorption Isotherms in Openâ€Metal Site Materials Using Force Field Calculations Based on Energy Decomposed Density Functional Theory. Chemistry - A European Journal, 2016, 22, 18045-18050.	1.7	11
51	Aqueous Solutions of Ionic Liquids: Microscopic Assembly. ChemPhysChem, 2016, 17, 380-386.	1.0	14
52	Computation of the Heat and Entropy of Adsorption in Proximity of Inflection Points. Journal of Physical Chemistry C, 2016, 120, 1727-1738.	1.5	21
53	Direct Free Energy Calculation in the Continuous Fractional Component Gibbs Ensemble. Journal of Chemical Theory and Computation, 2016, 12, 1481-1490.	2.3	47
54	Understanding and solving disorder in the substitution pattern of amino functionalized MIL-47(V). Dalton Transactions, 2016, 45, 4309-4315.	1.6	5

#	Article	IF	Citations
55	Computing bubble-points of CO2/CH4 gas mixtures in ionic liquids from Monte Carlo simulations. Fluid Phase Equilibria, 2016, 418, 100-107.	1.4	9
56	Solubilities of CO2, CH4, C2H6, and SO2 in ionic liquids and Selexol from Monte Carlo simulations. Journal of Computational Science, 2016, 15, 74-80.	1.5	31
57	RASPA: molecular simulation software for adsorption and diffusion in flexible nanoporous materials. Molecular Simulation, 2016, 42, 81-101.	0.9	1,266
58	Separation of Amyl Alcohol Isomers in ZIFâ€₹7. ChemPhysChem, 2015, 16, 2735-2738.	1.0	8
59	Exploiting Largeâ€Pore Metal–Organic Frameworks for Separations through Entropic Molecular Mechanisms. ChemPhysChem, 2015, 16, 2046-2067.	1.0	27
60	Entropic Separation of Styrene/Ethylbenzene Mixtures by Exploitation of Subtle Differences in Molecular Configurations in Ordered Crystalline Nanoporous Adsorbents. Langmuir, 2015, 31, 3771-3778.	1.6	46
61	Simulating the Reactions of CO2 in Aqueous Monoethanolamine Solution by Reaction Ensemble Monte Carlo Using the Continuous Fractional Component Method. Journal of Chemical Theory and Computation, 2015, 11, 2661-2669.	2.3	30
62	Understanding DABCO Nanorotor Dynamics in Isostructural Metal–Organic Frameworks. Journal of Physical Chemistry Letters, 2015, 6, 812-816.	2.1	37
63	Understanding and Exploiting Window Effects for Adsorption and Separations of Hydrocarbons. Journal of Physical Chemistry C, 2015, 119, 19236-19243.	1.5	13
64	Understanding Nanopore Window Distortions in the Reversible Molecular Valve Zeolite RHO. Chemistry of Materials, 2015, 27, 5657-5667.	3.2	42
65	Solubility of Natural Gas Species in Ionic Liquids and Commercial Solvents: Experiments and Monte Carlo Simulations. Journal of Chemical & Engineering Data, 2015, 60, 3039-3045.	1.0	26
66	Investigating water and framework dynamics in pillared MOFs. Molecular Simulation, 2015, 41, 1379-1387.	0.9	10
67	Entropic Separations of Mixtures of Aromatics by Selective Faceâ€toâ€Face Molecular Stacking in Oneâ€Dimensional Channels of Metal–Organic Frameworks and Zeolites. ChemPhysChem, 2015, 16, 532-535.	1.0	17
68	On the Application of Classical Molecular Simulations of Adsorption in Metal–Organic Frameworks. , 2015, , 53-112.		5
69	Exploring new methods and materials for enantioselective separations and catalysis. Molecular Simulation, 2014, 40, 585-598.	0.9	21
70	Separating Xylene Isomers by Commensurate Stacking of <i>p</i> i>â€Xylene within Channels of MAFâ€X8. Angewandte Chemie - International Edition, 2014, 53, 7774-7778.	7.2	93
71	Advanced Monte Carlo simulations of the adsorption of chiral alcohols in a homochiral metalâ€organic framework. AICHE Journal, 2014, 60, 2324-2334.	1.8	14
72	Enantioselective adsorption of ibuprofen and lysine in metal–organic frameworks. Chemical Communications, 2014, 50, 10849.	2.2	52

#	Article	IF	CITATIONS
73	A Comparison of Advanced Monte Carlo Methods for Open Systems: CFCMC vs CBMC. Journal of Chemical Theory and Computation, 2014, 10, 942-952.	2.3	60
74	Adsorption of hydrogen sulphide on Metal-Organic Frameworks. RSC Advances, 2013, 3, 14737.	1.7	49
75	On the inner workings of Monte Carlo codes. Molecular Simulation, 2013, 39, 1253-1292.	0.9	325
76	Strategies to Simultaneously Enhance the Hydrostability and the Alcohol–Water Separation Behavior of Cu-BTC. Journal of Physical Chemistry C, 2013, 117, 20706-20714.	1.5	23
77	Molecular-level Insight into Unusual Low Pressure CO ₂ Affinity in Pillared Metal–Organic Frameworks. Journal of the American Chemical Society, 2013, 135, 7172-7180.	6.6	100
78	Molecular Mechanisms for Adsorption in Cu-BTC Metal Organic Framework. Journal of Physical Chemistry C, 2013, 117, 11357-11366.	1.5	81
79	Simulation Study of Structural Changes in Zeolite RHO. Journal of Physical Chemistry C, 2013, 117, 11592-11599.	1.5	23
80	Computerâ€Assisted Screening of Ordered Crystalline Nanoporous Adsorbents for Separation of Alkane Isomers. Angewandte Chemie - International Edition, 2012, 51, 11867-11871.	7.2	89
81	Simulation Study on the Adsorption Properties of Linear Alkanes on Closed Nanotube Bundles. Journal of Physical Chemistry B, 2012, 116, 9812-9819.	1.2	15
82	Feasibility of zeolitic imidazolate framework membranes for clean energy applications. Energy and Environmental Science, 2012, 5, 7637.	15.6	154
83	Self-Diffusion of Chain Molecules in the Metal–Organic Framework IRMOF-1: Simulation and Experiment. Journal of Physical Chemistry Letters, 2012, 3, 930-933.	2.1	59
84	Zeolite Force Fields and Experimental Siliceous Frameworks in a Comparative Infrared Study. Journal of Physical Chemistry C, 2012, 116, 25797-25805.	1.5	28
85	Molecular simulation investigation into the performance of Cu–BTC metal–organic frameworks for carbon dioxide–methane separations. Physical Chemistry Chemical Physics, 2011, 13, 20453.	1.3	25
86	External Surface Adsorption on Silicalite-1 Zeolite Studied by Molecular Simulation. Journal of Physical Chemistry C, 2011, 115, 15355-15360.	1.5	18
87	Elucidating steric effects on enantioselective epoxidation catalyzed by (salen)Mn in metal-organic frameworks. Journal of Molecular Catalysis A, 2011, 334, 89-97.	4.8	40
88	Reconciling the Relevant Site Model and dynamically corrected Transition State Theory. Chemical Physics Letters, 2010, 495, 77-79.	1,2	4
89	Enantioselective Adsorption in Achiral Zeolites. Angewandte Chemie - International Edition, 2010, 49, 3010-3013.	7.2	36
90	On the application of chiral amplification via adsorption. Chemical Engineering Science, 2010, 65, 6478-6485.	1.9	6

#	Article	IF	Citations
91	Distance and angular holonomic constraints in molecular simulations. Journal of Chemical Physics, 2010, 133, 034114.	1.2	16
92	Self-Diffusion Studies in CuBTC by PFG NMR and MD Simulations. Journal of Physical Chemistry C, 2010, 114, 10527-10534.	1.5	82
93	Analysis of the ITQ-12 Zeolite Performance in Propaneâ^Propylene Separations Using a Combination of Experiments and Molecular Simulations. Journal of Physical Chemistry C, 2010, 114, 14907-14914.	1.5	47
94	Performance of Chiral Zeolites for Enantiomeric Separation Revealed by Molecular Simulation. Journal of Physical Chemistry C, 2010, 114, 22207-22213.	1.5	34
95	Modeling Adsorption and Self-Diffusion of Methane in LTA Zeolites: The Influence of Framework Flexibility. Journal of Physical Chemistry C, 2010, 114, 15068-15074.	1.5	84
96	Effective Monte Carlo Scheme for Multicomponent Gas Adsorption and Enantioselectivity in Nanoporous Materials. Journal of Physical Chemistry Letters, 2010, 1, 2154-2158.	2.1	14
97	Enantioselective Adsorption Characteristics of Aluminum-Substituted MFI Zeolites. Chemistry of Materials, 2010, 22, 4591-4601.	3.2	15
98	Strategies for Characterization of Large-Pore Metal-Organic Frameworks by Combined Experimental and Computational Methods. Chemistry of Materials, 2009, 21, 4768-4777.	3.2	68
99	Method for Analyzing Structural Changes of Flexible Metalâ 'Organic Frameworks Induced by Adsorbates. Journal of Physical Chemistry C, 2009, 113, 19317-19327.	1.5	71
100	Adsorption and Diffusion of Water, Methanol, and Ethanol in All-Silica DD3R: Experiments and Simulation. Journal of Physical Chemistry C, 2009, 113, 14290-14301.	1.5	69
101	Evaluation of various water models for simulation of adsorption in hydrophobic zeolites. Molecular Simulation, 2009, 35, 1067-1076.	0.9	60
102	Heats of Adsorption for Seven Gases in Three Metalâ [^] Organic Frameworks: Systematic Comparison of Experiment and Simulation. Langmuir, 2009, 25, 7383-7388.	1.6	212
103	A new perspective on the order- <i>n</i> algorithm for computing correlation functions. Molecular Simulation, 2009, 35, 1084-1097.	0.9	82
104	Transferable Force Field for Carbon Dioxide Adsorption in Zeolites. Journal of Physical Chemistry C, 2009, 113, 8814-8820.	1.5	199
105	Understanding Inflections and Steps in Carbon Dioxide Adsorption Isotherms in Metal-Organic Frameworks. Journal of the American Chemical Society, 2008, 130, 406-407.	6.6	485
106	Computing the Heat of Adsorption using Molecular Simulations: The Effect of Strong Coulombic Interactions. Journal of Chemical Theory and Computation, 2008, 4, 1107-1118.	2.3	202
107	Separation and Molecular-Level Segregation of Complex Alkane Mixtures in Metalâ^'Organic Frameworks. Journal of the American Chemical Society, 2008, 130, 10884-10885.	6.6	116
108	Unraveling the Argon Adsorption Processes in MFI-Type Zeolite. Journal of Physical Chemistry C, 2008, 112, 9976-9979.	1.5	57

#	Article	IF	Citations
109	Recent developments in the molecular modeling of diffusion in nanoporous materials. Molecular Simulation, 2007, 33, 305-325.	0.9	166
110	A Simulation Study of Alkanes in Linde Type A Zeolites. Adsorption Science and Technology, 2007, 25, 417-427.	1.5	32
111	Understanding Aluminum Location and Non-framework Ions Effects on Alkane Adsorption in Aluminosilicates:  A Molecular Simulation Study. Journal of Physical Chemistry C, 2007, 111, 10419-10426.	1.5	37
112	A Computational Method To Characterize Framework Aluminum in Aluminosilicates. Angewandte Chemie - International Edition, 2007, 46, 276-278.	7.2	44
113	Exceptional Negative Thermal Expansion in Isoreticular Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2007, 46, 4496-4499.	7.2	289
114	Molecular simulation of adsorption sites of light gases in the metal-organic framework IRMOF-1. Fluid Phase Equilibria, 2007, 261, 152-161.	1.4	129
115	A computational study of CO2, N2, and CH4 adsorption in zeolites. Adsorption, 2007, 13, 469-476.	1.4	159
116	Dynamically Corrected Transition State Theory Calculations of Self-Diffusion in Anisotropic Nanoporous Materials. Journal of Physical Chemistry B, 2006, 110, 3164-3172.	1.2	43
117	Loading Dependence of the Diffusion Coefficient of Methane in Nanoporous Materials. Journal of Physical Chemistry B, 2006, 110, 22754-22772.	1.2	80
118	Influence of Cation Na/Ca Ratio on Adsorption in LTA 5A: \hat{A} A Systematic Molecular Simulation Study of Alkane Chain Length. Journal of Physical Chemistry B, 2006, 110, 23968-23976.	1.2	72
119	Understanding Diffusion in Nanoporous Materials. Physical Review Letters, 2006, 96, 044501.	2.9	104
120	A Coarse-Graining Approach for the Proton Complex in Protonated Aluminosilicates. Journal of Physical Chemistry B, 2006, 110, 5838-5841.	1.2	25
121	Understanding cage effects in the n-alkane conversion on zeolites. Journal of Catalysis, 2006, 237, 278-290.	3.1	61
122	Elucidating alkane adsorption in sodium-exchanged zeolites from molecular simulations to empirical equations. Applied Surface Science, 2005, 252, 716-722.	3.1	16
123	Molecular Understanding of Diffusion in Confinement. Physical Review Letters, 2005, 95, 164505.	2.9	48
124	Molecular path control in zeolite membranes. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 12317-12320.	3.3	30
125	Molecular simulation of loading-dependent diffusion in nanoporous materials using extended dynamically corrected transition state theory. Journal of Chemical Physics, 2005, 122, 224712.	1.2	142
126	Molecular Simulation of Loading Dependent Slow Diffusion in Confined Systems. Physical Review Letters, 2004, 93, 248301.	2.9	108

#	Article	IF	CITATIONS
127	Force Field Parametrization through Fitting on Inflection Points in Isotherms. Physical Review Letters, 2004, 93, 088302.	2.9	144
128	The selectivity of -hexane hydroconversion on MOR-, MAZ-, and FAU-type zeolites. Journal of Catalysis, 2004, 228, 121-129.	3.1	28
129	Reply to the Comment on "Computer Simulation of Incommensurate Diffusion in Zeolites:Â Understanding Window Effects― Journal of Physical Chemistry B, 2004, 108, 16330-16330.	1.2	2
130	On the Inflection in the Concentration Dependence of the Maxwellâ [^] Stefan Diffusivity of CF4 in MFI Zeolite. Journal of Physical Chemistry B, 2004, 108, 14820-14822.	1.2	26
131	United Atom Force Field for Alkanes in Nanoporous Materials. Journal of Physical Chemistry B, 2004, 108, 12301-12313.	1.2	314
132	Understanding the Role of Sodium during Adsorption:Â A Force Field for Alkanes in Sodium-Exchanged Faujasites. Journal of the American Chemical Society, 2004, 126, 11377-11386.	6.6	255
133	Understanding the Window Effect in Zeolite Catalysis. Angewandte Chemie - International Edition, 2003, 42, 3624-3626.	7.2	68
134	Computer Simulation of Incommensurate Diffusion in Zeolites:Â Understanding Window Effects. Journal of Physical Chemistry B, 2003, 107, 12138-12152.	1.2	83
135	Simulating the Effect of Nonframework Cations on the Adsorption of Alkanes in MFI-type Zeolites. Journal of Physical Chemistry B, 2003, 107, 12088-12096.	1.2	95
136	Incommensurate Diffusion in Confined Systems. Physical Review Letters, 2003, 90, 245901.	2.9	89
137	Regular Binary Thermal Lattice-Gases. Journal of Statistical Physics, 2002, 108, 283-315.	0.5	1
138	Coupling of thermal and mass diffusion in regular binary thermal lattice gases. Physical Review E, 2001, 64, 062102.	0.8	1
139	Boltzmann approximation of transport properties in thermal lattice gases. Physical Review E, 2001, 63, 021109.	0.8	2
140	The distributed ASCI Supercomputer project. Operating Systems Review (ACM), 2000, 34, 76-96.	1.5	80
141	Dynamic structure factor in single- and two-species thermal GBL lattice gas. Computer Physics Communications, 2000, 129, 13-20.	3.0	3
142	Computational aspects of multi-species lattice-gas automata. Lecture Notes in Computer Science, 1999, , 339-349.	1.0	4
143	Parallel latice-Boltzmann simulation of fluid flow in centrifugal elutriation chambers. Lecture Notes in Computer Science, 1998, , 173-182.	1.0	2