
SÃ, ren-Peter Olesen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4493465/publications.pdf Version: 2024-02-01

SÃ DEN-DETED OLESEN

#	Article	IF	CITATIONS
1	Single-copy insertion of transgenes in Caenorhabditis elegans. Nature Genetics, 2008, 40, 1375-1383.	21.4	1,057
2	Haemodynamic shear stress activates a K+ current in vascular endothelial cells. Nature, 1988, 331, 168-170.	27.8	961
3	Electrical resistance of brain microvascular endothelium. Brain Research, 1982, 241, 49-55.	2.2	464
4	The KCNQ1 Potassium Channel: From Gene to Physiological Function. Physiology, 2005, 20, 408-416.	3.1	224
5	Characterization of the cloned human intermediate-conductance Ca ²⁺ -activated K ⁺ channel. American Journal of Physiology - Cell Physiology, 1998, 275, C848-C856.	4.6	210
6	Cardiac Potassium Channel Subtypes: New Roles in Repolarization and Arrhythmia. Physiological Reviews, 2014, 94, 609-653.	28.8	181
7	Identification of a Kir3.4 Mutation in Congenital Long QT Syndrome. American Journal of Human Genetics, 2010, 86, 872-880.	6.2	177
8	Pharmacological characterization of small-conductance Ca2+ -activated K+ channels stably expressed in HEK 293 cells. British Journal of Pharmacology, 2000, 129, 991-999.	5.4	164
9	Cloning, expression, and distribution of a Ca(2+)-activated K+ channel beta-subunit from human brain Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 9200-9205.	7.1	157
10	BK Channel Modulators: A Comprehensive Overview. Current Medicinal Chemistry, 2008, 15, 1126-1146.	2.4	145
11	Downregulation of Kv7.4 Channel Activity in Primary and Secondary Hypertension. Circulation, 2011, 124, 602-611.	1.6	139
12	KCNE4 is an inhibitory subunit to the KCNQ1 channel. Journal of Physiology, 2002, 542, 119-130.	2.9	135
13	Activation of Human ether-a-go-go-Related Gene Potassium Channels by the Diphenylurea 1,3-Bis-(2-hydroxy-5-trifluoromethyl-phenyl)-urea (NS1643). Molecular Pharmacology, 2006, 69, 266-277.	2.3	135
14	High Prevalence of Long QT Syndrome–Associated <i>SCN5A</i> Variants in Patients With Early-Onset Lone Atrial Fibrillation. Circulation: Cardiovascular Genetics, 2012, 5, 450-459.	5.1	129
15	BK channel activators and their therapeutic perspectives. Frontiers in Physiology, 2014, 5, 389.	2.8	120
16	Genetic variation in KCNA5: impact on the atrial-specific potassium current IKur in patients with lone atrial fibrillation. European Heart Journal, 2013, 34, 1517-1525.	2.2	119
17	Coronary Vasorelaxant Effect of Levosimendan, a New Inodilator with Calcium-Sensitizing Properties. Journal of Cardiovascular Pharmacology, 1998, 31, 741-749.	1.9	117
18	Pharmacological modulation of SK3 channels. Neuropharmacology, 2001, 40, 879-887.	4.1	116

#	Article	IF	CITATIONS
19	Apamin interacts with all subtypes of cloned small-conductance Ca 2+ -activated K + channels. Pflugers Archiv European Journal of Physiology, 2001, 441, 544-550.	2.8	116
20	The KCNQ1 potassium channel is down-regulated by ubiquitylating enzymes of the Nedd4/Nedd4-like family. Cardiovascular Research, 2007, 74, 64-74.	3.8	116
21	KCNQ4 channel activation by BMS-204352 and retigabine. Neuropharmacology, 2001, 40, 888-898.	4.1	114
22	Reduced KCNQ4-Encoded Voltage-Dependent Potassium Channel Activity Underlies Impaired β-Adrenoceptor–Mediated Relaxation of Renal Arteries in Hypertension. Hypertension, 2012, 59, 877-884.	2.7	113
23	Mechanism of Action of a Novel Humanether-a-go-go-Related Gene Channel Activator. Molecular Pharmacology, 2006, 69, 658-665.	2.3	112
24	Mutations in sodium channel β-subunit SCN3B are associated with early-onset lone atrial fibrillation. Cardiovascular Research, 2011, 89, 786-793.	3.8	112
25	The Small Molecule NS11021 Is a Potent and Specific Activator of Ca ²⁺ -Activated Big-Conductance K ⁺ Channels. Molecular Pharmacology, 2007, 72, 1033-1044.	2.3	106
26	Familial Aggregation of Lone Atrial Fibrillation in Young Persons. Journal of the American College of Cardiology, 2012, 60, 917-921.	2.8	105
27	A novel KCND3 gain-of-function mutation associated with early-onset of persistent lone atrial fibrillation. Cardiovascular Research, 2013, 98, 488-495.	3.8	104
28	Requirement of subunit co-assembly and ankyrin-G for M-channel localization at the axon initial segment. Journal of Cell Science, 2007, 120, 953-963.	2.0	103
29	KCNQ1 mutation Q147R is associated with atrial fibrillation and prolonged QT interval. Heart Rhythm, 2007, 4, 1532-1541.	0.7	103
30	Substances that rapidly augment ionic conductance of endothelium in cerebral venules. Acta Physiologica Scandinavica, 1986, 127, 233-241.	2.2	101
31	Characterization of NS 2028 as a specific inhibitor of soluble guanylyl cyclase. British Journal of Pharmacology, 1998, 123, 299-309.	5.4	101
32	KCNQ4 channels expressed in mammalian cells: functional characteristics and pharmacology. American Journal of Physiology - Cell Physiology, 2001, 280, C859-C866.	4.6	100
33	A transient outward potassium current activator recapitulates the electrocardiographic manifestations of Brugada syndrome. Cardiovascular Research, 2008, 81, 686-694.	3.8	99
34	KCNE5 Induces Time- and Voltage-Dependent Modulation of the KCNQ1 Current. Biophysical Journal, 2002, 83, 1997-2006.	0.5	98
35	Inhibition of T cell proliferation by selective block of Ca2+-activated K+ channels. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 10917-10921.	7.1	88
36	An ERG Channel Inhibitor from the Scorpion Buthus eupeus. Journal of Biological Chemistry, 2001, 276, 9868-9876.	3.4	85

#	Article	IF	CITATIONS
37	Activation of big conductance Ca2+-activated K+ channels (BK) protects the heart against ischemia–reperfusion injury. Pflugers Archiv European Journal of Physiology, 2009, 457, 979-988.	2.8	84
38	KCNQ1 Channels Sense Small Changes in Cell Volume. Journal of Physiology, 2003, 549, 419-427.	2.9	83
39	KCNMA1 Encoded Cardiac BK Channels Afford Protection against Ischemia-Reperfusion Injury. PLoS ONE, 2014, 9, e103402.	2.5	83
40	Modulation of the Ca 2+ -dependent K + Channel, hslo , by the Substituted Diphenylurea NS 1608, Paxilline and Internal Ca 2+. Neuropharmacology, 1996, 35, 903-914.	4.1	82
41	The acrylamide (S)-1 differentially affects Kv7 (KCNQ) potassium channels. Neuropharmacology, 2006, 51, 1068-1077.	4.1	80
42	Transmural expression of ion channels and transporters in human nondiseased and end-stage failing hearts. Pflugers Archiv European Journal of Physiology, 2009, 459, 11-23.	2.8	80
43	KCNE3 Mutation V17M Identified in a Patient with Lone Atrial Fibrillation. Cellular Physiology and Biochemistry, 2008, 21, 047-054.	1.6	78
44	Rapid increase in blood-brain barrier permeability during severe hypoxia and metabolic inhibition. Brain Research, 1986, 368, 24-29.	2.2	75
45	Activation of the human intermediate-conductance Ca2+-activated K+ channel by 1-ethyl-2-benzimidazolinone is strongly Ca2+-dependent. Biochimica Et Biophysica Acta - Biomembranes, 1999, 1420, 231-240.	2.6	75
46	Minimum Information about a Cardiac Electrophysiology Experiment (MICEE): Standardised reporting for model reproducibility, interoperability, and data sharing. Progress in Biophysics and Molecular Biology, 2011, 107, 4-10.	2.9	75
47	Contribution of K v 7 Channels to Basal Coronary Flow and Active Response to Ischemia. Hypertension, 2013, 62, 1090-1097.	2.7	74
48	Annotation of loci from genome-wide association studies using tissue-specific quantitative interaction proteomics. Nature Methods, 2014, 11, 868-874.	19.0	70
49	Leakiness of rat brain microvessels to fluorescent probes following craniotomy. Acta Physiologica Scandinavica, 1987, 130, 63-68.	2.2	69
50	Biophysical Characterization of the New Human Ether-A-Go-Go-Related Gene Channel Opener NS3623 [N-(4-Bromo-2-(1H-tetrazol-5-yl)-phenyl)-N′-(3′-trifluoromethylphenyl)urea]. Molecular Pharmacology, 2006, 70, 1319-1329.	2.3	67
51	Genetic variation in the two-pore domain potassium channel, TASK-1, may contribute to an atrial substrate for arrhythmogenesis. Journal of Molecular and Cellular Cardiology, 2014, 67, 69-76.	1.9	66
52	A calciumâ€dependent reversible permeability increase in microvessels in frog brain, induced by serotonin Journal of Physiology, 1985, 361, 103-113.	2.9	64
53	Opening of large-conductance calcium-activated potassium channels by the substituted benzimidazolone NS004. Journal of Neurophysiology, 1994, 71, 1873-1882.	1.8	63
54	Activation of calcium-dependent potassium channels in rat brain neurons by neurotrophin-3 and nerve growth factor. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 1002-1006.	7.1	62

#	Article	IF	CITATIONS
55	Activation of KCNQ5 channels stably expressed in HEK293 cells by BMS-204352. European Journal of Pharmacology, 2002, 437, 129-137.	3.5	62
56	The genetic component of Brugada syndrome. Frontiers in Physiology, 2013, 4, 179.	2.8	62
57	Termination of Vernakalant-Resistant Atrial Fibrillation by Inhibition of Small-Conductance Ca ²⁺ -Activated K ⁺ Channels in Pigs. Circulation: Arrhythmia and Electrophysiology, 2017, 10, .	4.8	62
58	Fundamental role for the KCNE4 ancillary subunit in Kv7.4 regulation of arterial tone. Journal of Physiology, 2015, 593, 5325-5340.	2.9	61
59	Electrical resistance of muscle capillary endothelium. Biophysical Journal, 1983, 42, 31-41.	0.5	60
60	New Binding Site on Common Molecular Scaffold Provides HERG Channel Specificity of Scorpion Toxin BeKm-1. Journal of Biological Chemistry, 2002, 277, 43104-43109.	3.4	59
61	Stable expression of the human large-conductance Ca2+-activated K+channel α- and β-subunits in HEK293 cells. FEBS Letters, 1997, 415, 67-70.	2.8	58
62	KCNE4 Is an Inhibitory Subunit to Kv1.1 and Kv1.3 Potassium Channels. Biophysical Journal, 2003, 85, 1525-1537.	0.5	58
63	Characterization of hERG1a and hERG1b potassium channels—a possible role for hERG1b in the I Kr current. Pflugers Archiv European Journal of Physiology, 2008, 456, 1137-1148.	2.8	58
64	Free oxygen radicals decrease electrical resistance of microvascular endothelium in brain. Acta Physiologica Scandinavica, 1987, 129, 181-187.	2.2	57
65	The KCNQ5 potassium channel from mouse: A broadly expressed M-current like potassium channel modulated by zinc, pH, and volume changes. Molecular Brain Research, 2005, 139, 52-62.	2.3	56
66	Very early-onset lone atrial fibrillation patients have a high prevalence of rare variants in genes previously associated with atrial fibrillation. Heart Rhythm, 2014, 11, 246-251.	0.7	54
67	Magnetocardiography on an isolated animal heart with a room-temperature optically pumped magnetometer. Scientific Reports, 2018, 8, 16218.	3.3	53
68	Non-invasive detection of animal nerve impulses with an atomic magnetometer operating near quantum limited sensitivity. Scientific Reports, 2016, 6, 29638.	3.3	52
69	NS 004—an activator of Ca2+-dependent K+ channels in cerebellar granule cells. NeuroReport, 1994, 5, 1001-1004.	1.2	50
70	Basolateral localisation of KCNQ1 potassium channels in MDCK cells: molecular identification of an N-terminal targeting motif. Journal of Cell Science, 2004, 117, 4517-4526.	2.0	50
71	BK channel activation by NS11021 decreases excitability and contractility of urinary bladder smooth muscle. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2010, 298, R378-R384.	1.8	48
72	Differential effects of the transient outward K+ current activator NS5806 in the canine left ventricle. Journal of Molecular and Cellular Cardiology, 2010, 48, 191-200.	1.9	46

#	Article	IF	CITATIONS
73	Regulation of cloned, Ca2+-activated K+ channels by cell volume changes. Pflugers Archiv European Journal of Physiology, 2002, 444, 167-177.	2.8	45
74	hERG1 channel activators: A new anti-arrhythmic principle. Progress in Biophysics and Molecular Biology, 2008, 98, 347-362.	2.9	45
75	Trafficking of Kv2.1 Channels to the Axon Initial Segment by a Novel Nonconventional Secretory Pathway. Journal of Neuroscience, 2017, 37, 11523-11536.	3.6	44
76	P ₂ â€purinoceptorâ€mediated formation of inositol phosphates and intracellular Ca ²⁺ transients in human coronary artery smooth muscle cells. British Journal of Pharmacology, 1996, 118, 1645-1652.	5.4	43
77	Subcellular localization of the delayed rectifier K+ channels KCNQ1 and ERG1 in the rat heart. American Journal of Physiology - Heart and Circulatory Physiology, 2004, 286, H1300-H1309.	3.2	40
78	Cell swelling activates cloned Ca2+-activated K+ channels: a role for the F-actin cytoskeleton. Biochimica Et Biophysica Acta - Biomembranes, 2003, 1615, 115-125.	2.6	39
79	Live Imaging of Kv7.2/7.3 Cell Surface Dynamics at the Axon Initial Segment: High Steady-State Stability and Calpain-Dependent Excitotoxic Downregulation Revealed. Journal of Neuroscience, 2016, 36, 2261-2266.	3.6	38
80	Hydralazine-induced vasodilation involves opening of high conductance Ca2+-activated K+ channels. European Journal of Pharmacology, 1998, 361, 43-49.	3.5	37
81	AMPâ€Activated Protein Kinase Downregulates Kv7.1 Cell Surface Expression. Traffic, 2012, 13, 143-156.	2.7	36
82	Specific Sorting and Post-Golgi Trafficking of Dendritic Potassium Channels in Living Neurons. Journal of Biological Chemistry, 2014, 289, 10566-10581.	3.4	36
83	hKCNE4 inhibits the hKCNQ1 potassium current without affecting the activation kinetics. Biochemical and Biophysical Research Communications, 2005, 328, 1146-1153.	2.1	35
84	Myocardial structural, contractile and electrophysiological changes in the guinea-pig heart failure model induced by chronic sympathetic activation. Experimental Physiology, 2011, 96, 647-663.	2.0	35
85	High Throughput Electrophysiology: New Perspectives for Ion Channel Drug Discovery. Receptors and Channels, 2003, 9, 3-12.	1.1	35
86	Regulation of ion permeability in frog brain venules. Significance of calcium, cyclic nucleotides and protein kinase C Journal of Physiology, 1987, 387, 59-68.	2.9	34
87	Deubiquitylating enzyme USP2 counteracts Nedd4-2–mediated downregulation of KCNQ1 potassium channels. Heart Rhythm, 2012, 9, 440-448.	0.7	34
88	Physiological consequences of transient outward K+ current activation during heart failure in the canine left ventricle. Journal of Molecular and Cellular Cardiology, 2012, 52, 1291-1298.	1.9	34
89	A Phosphoinositide 3-Kinase (PI3K)-serum- and glucocorticoid-inducible Kinase 1 (SGK1) Pathway Promotes Kv7.1 Channel Surface Expression by Inhibiting Nedd4-2 Protein. Journal of Biological Chemistry, 2013, 288, 36841-36854.	3.4	34
90	TMEM16A is implicated in the regulation of coronary flow and is altered in hypertension. British Journal of Pharmacology, 2019, 176, 1635-1648.	5.4	34

#	Article	IF	CITATIONS
91	Pharmacological Activation of Rapid Delayed Rectifier Potassium Current Suppresses Bradycardia-Induced Triggered Activity in the Isolated Guinea Pig Heart. Journal of Pharmacology and Experimental Therapeutics, 2007, 321, 996-1002.	2.5	33
92	G-protein-coupled inward rectifier potassium current contributes to ventricular repolarization. Cardiovascular Research, 2014, 101, 175-184.	3.8	33
93	Activation of the human, intermediate-conductance, Ca2+-activated K+ channel by methylxanthines. Pflugers Archiv European Journal of Physiology, 2000, 440, 809-818.	2.8	32
94	Modulation of ERG Channels by XE991. Basic and Clinical Pharmacology and Toxicology, 2007, 100, 316-322.	2.5	32
95	ATP-dependent closure and reactivation of inward rectifier K+ channels in endothelial cells Circulation Research, 1993, 73, 492-495.	4.5	31
96	In Vivo Effects of the IKr Agonist NS3623 on Cardiac Electrophysiology of the Guinea Pig. Journal of Cardiovascular Pharmacology, 2008, 52, 35-41.	1.9	31
97	Functional assessment of compound mutations in the KCNQ1 and KCNH2 genes associated with long QT syndrome. Heart Rhythm, 2005, 2, 1238-1249.	0.7	30
98	Comparison of the Effects of a Transient Outward Potassium Channel Activator on Currents Recorded from Atrial and Ventricular Cardiomyocytes. Journal of Cardiovascular Electrophysiology, 2011, 22, 1057-1066.	1.7	30
99	Chlorideâ€selective channels of large conductance in bovine aortic endothelial cells. Acta Physiologica Scandinavica, 1992, 144, 191-198.	2.2	29
100	NS19504: A Novel BK Channel Activator with Relaxing Effect on Bladder Smooth Muscle Spontaneous Phasic Contractions. Journal of Pharmacology and Experimental Therapeutics, 2014, 350, 520-530.	2.5	29
101	Functional coupling between heterologously expressed dopamine D2 receptors and KCNQ channels. Pflugers Archiv European Journal of Physiology, 2003, 446, 684-694.	2.8	28
102	Differential Expression of hERG1 Channel Isoforms Reproduces Properties of Native IKr and Modulates Cardiac Action Potential Characteristics. PLoS ONE, 2010, 5, e9021.	2.5	28
103	I _{Ks} Gain―and Lossâ€ofâ€Function in Earlyâ€Onset Lone Atrial Fibrillation. Journal of Cardiovascular Electrophysiology, 2015, 26, 715-723.	1.7	28
104	Modulation of KCNQ4 channel activity by changes in cell volume. Biochimica Et Biophysica Acta - Biomembranes, 2004, 1660, 1-6.	2.6	27
105	KCNE3 is an inhibitory subunit of the Kv4.3 potassium channel. Biochemical and Biophysical Research Communications, 2006, 346, 958-967.	2.1	27
106	Mutations in the Kv1.5 channel gene KCNA5 in cardiac arrest patients. Biochemical and Biophysical Research Communications, 2007, 354, 776-782.	2.1	26
107	The phenotype characteristics of type 13 long QT syndrome with mutation in KCNJ5 (Kir3.4-G387R). Heart Rhythm, 2013, 10, 1500-1506.	0.7	26
108	Computational analysis of the effects of the hERG channel opener NS1643 in a human ventricular cell model. Heart Rhythm, 2008, 5, 734-741.	0.7	25

#	Article	IF	CITATIONS
109	Gain-of-function mutations in potassium channel subunit KCNE2 associated with early-onset lone atrial fibrillation. Biomarkers in Medicine, 2014, 8, 557-570.	1.4	25
110	Tissue-specific effects of acetylcholine in the canine heart. American Journal of Physiology - Heart and Circulatory Physiology, 2013, 305, H66-H75.	3.2	24
111	Voltage-independent KCNQ4 currents induced by (±)BMS-204352. Pflugers Archiv European Journal of Physiology, 2003, 446, 607-616.	2.8	23
112	Characterization of cardiac repolarization in the Göttingen minipig. Journal of Pharmacological and Toxicological Methods, 2011, 63, 186-195.	0.7	23
113	Identification of a novel voltage-gated Na+ channel rNav1.5a in the rat hippocampal progenitor stem cell line HiB5. Pflugers Archiv European Journal of Physiology, 2001, 443, 18-30.	2.8	22
114	Effect of beta-Adrenoceptor Blockers on HumanEther-a-go-go-Related Gene (HERG) Potassium Channels. Basic and Clinical Pharmacology and Toxicology, 2005, 96, 123-130.	2.5	22
115	Inactivation as a New Regulatory Mechanism for Neuronal Kv7 Channels. Biophysical Journal, 2007, 92, 2747-2756.	0.5	22
116	High Throughput Electrophysiology: New Perspectives for Ion Channel Drug Discovery. Receptors and Channels, 2003, 9, 3-12.	1.1	21
117	K _v 7.1 surface expression is regulated by epithelial cell polarization. American Journal of Physiology - Cell Physiology, 2011, 300, C814-C824.	4.6	21
118	GIRK Channel Activation Via Adenosine or Muscarinic Receptors Has Similar Effects on Rat Atrial Electrophysiology. Journal of Cardiovascular Pharmacology, 2013, 62, 192-198.	1.9	21
119	Characterization of two new dominant ClC-1 channel mutations associated with myotonia. Muscle and Nerve, 2003, 28, 722-732.	2.2	20
120	Synthesis and characterisation of NS13558: a new important tool for addressing KCa1.1 channel function ex vivo. Naunyn-Schmiedeberg's Archives of Pharmacology, 2010, 381, 271-283.	3.0	19
121	Loss of K ⁺ Currents in Heart Failure Is Accentuated in KChIP2 Deficient Mice. Journal of Cardiovascular Electrophysiology, 2014, 25, 896-904.	1.7	19
122	pH-dependent inhibition of K2P3.1 prolongs atrial refractoriness in whole hearts. Pflugers Archiv European Journal of Physiology, 2016, 468, 643-654.	2.8	19
123	A radiolabeled peptide ligand of the hERG channel, [125 I]-BeKm-1. Pflugers Archiv European Journal of Physiology, 2003, 447, 55-63.	2.8	18
124	Activation of ERG2 potassium channels by the diphenylurea NS1643. Neuropharmacology, 2007, 53, 283-294.	4.1	17
125	Biophysical Characterization of the Short QT Mutation hERG-N588K Reveals a Mixed Gain-and Loss-of-Function. Cellular Physiology and Biochemistry, 2008, 22, 611-624.	1.6	17
126	Development of heart failure is independent of K ⁺ channelâ€ i nteracting protein 2 expression. Journal of Physiology, 2013, 591, 5923-5937.	2.9	17

#	Article	IF	CITATIONS
127	Extracellular Potassium Inhibits Kv7.1 Potassium Channels by Stabilizing an Inactivated State. Biophysical Journal, 2011, 101, 818-827.	0.5	16
128	Functional properties of human neuronal Kv11 channels. Pflugers Archiv European Journal of Physiology, 2009, 458, 689-700.	2.8	15
129	Pharmacological Activation of <i>I</i> _{Kr} Impairs Conduction in Guinea Pig Hearts. Journal of Cardiovascular Electrophysiology, 2010, 21, 923-929.	1.7	15
130	K _{Ca} 3.1 channel downregulation and impaired endotheliumâ€derived hyperpolarizationâ€ŧype relaxation in pulmonary arteries from chronically hypoxic rats. Experimental Physiology, 2013, 98, 957-969.	2.0	15
131	Frequency-dependent modulation of KCNQ1 and HERG1 potassium channels. Biochemical and Biophysical Research Communications, 2006, 343, 1224-1233.	2.1	14
132	Analysis of the Antitumor Activity of Clotrimazole on A375 Human Melanoma Cells. Anticancer Research, 2015, 35, 3781-6.	1.1	14
133	Relaxation of Rat Resistance Arteries by Acetylcholine Involves a Dual Mechanism: Activation of K ⁺ Channels and Formation of Nitric Oxide. Basic and Clinical Pharmacology and Toxicology, 1997, 80, 280-285.	0.0	13
134	CNTF inhibits high voltage activated Ca2+ currents in fetal mouse cortical neurones. Journal of Neurochemistry, 2002, 82, 495-503.	3.9	13
135	Blockade of Ca2+-activated K+ channels in T cells: an option for the treatment of multiple sclerosis?. European Journal of Immunology, 2005, 35, 1023-1026.	2.9	13
136	Trafficking of the <scp>I_{Ks}</scp> â€Complex in <scp>MDCK</scp> Cells: Site ofÂSubunit Assembly and Determinants ofÂPolarized Localization. Traffic, 2013, 14, 399-411.	2.7	13
137	The corticosteroid hormone induced factor: A new modulator of KCNQ1 channels?. Biochemical and Biophysical Research Communications, 2006, 341, 979-988.	2.1	11
138	Keeping the rhythm — Pro-arrhythmic investigations in isolated Göttingen minipig hearts. Journal of Pharmacological and Toxicological Methods, 2011, 64, 134-144.	0.7	11
139	Preservation of cardiac function by prolonged action potentials in mice deficient of KChIP2. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 309, H481-H489.	3.2	11
140	Inhibition of the human intermediate-conductance, Ca2+-activated K+ channel by intracellular acidification. Pflugers Archiv European Journal of Physiology, 2000, 440, 153-156.	2.8	10
141	Pharmacological investigation of the role of ion channels in salivary secretion. Pflugers Archiv European Journal of Physiology, 2003, 446, 78-87.	2.8	9
142	Protein kinase A stimulates Kv7.1 surface expression by regulating Nedd4-2-dependent endocytic trafficking. American Journal of Physiology - Cell Physiology, 2015, 309, C693-C706.	4.6	8
143	Acrylamides as potassium channel openers. Expert Opinion on Therapeutic Patents, 2007, 17, 1215-1226.	5.0	7
144	Electrical resistance of arterioles and venules in the hamster cheek pouch. Acta Physiologica Scandinavica, 1985, 123, 121-126.	2.2	4

#	Article	IF	CITATIONS
145	Functional Characterization of a Cloned Human Intermediate-Conductance Ca2+-Activated K+ Channel. Annals of the New York Academy of Sciences, 1999, 868, 423-426.	3.8	4
146	Subtype-specific, bi-component inhibition of SK channels by low internal pH. Biochemical and Biophysical Research Communications, 2006, 343, 943-949.	2.1	4
147	Functional consequences of genetic variation in sodium channel modifiers in early onset lone atrial fibrillation. Personalized Medicine, 2018, 15, 93-102.	1.5	4
148	KCa 1—KCa5 families. , 2009, , 403-423.		3
149	Comparison of the Effects of the Transient Outward Potassium Channel Activator NS5806 on Canine Atrial and Ventricular Cardiomyocytes. Biophysical Journal, 2010, 98, 334a.	0.5	2
150	Recent Developments in the Pharmacology of Epithelial Ca2+-Activated K+ Channels. , 2016, , 857-899.		2
151	Recent Developments in the Pharmacology of Epithelial Ca2 +-Activated K+ Channels. Physiology in Health and Disease, 2020, , 967-1010.	0.3	1
152	Modulation of Endothelial Permeability: Role of Receptors, Second Messengers and Ion Channels. , 1989, , 21-27.		0
153	KCNQ Channels are Sensors of Cell Volume. , 2004, , 389-390.		0
154	Modulation of KCNQ4 Channels by Changes in Cell Volume. , 2004, , 401-403.		0