Lukas Winter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4493359/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Magnetic resonance thermometry: Methodology, pitfalls and practical solutions. International Journal of Hyperthermia, 2016, 32, 63-75.	2.5	173
2	Modular 32-channel transceiver coil array for cardiac MRI at 7.0T. Magnetic Resonance in Medicine, 2014, 72, 276-290.	3.0	90
3	Design and Evaluation of a Hybrid Radiofrequency Applicator for Magnetic Resonance Imaging and RF Induced Hyperthermia: Electromagnetic Field Simulations up to 14.0 Tesla and Proof-of-Concept at 7.0 Tesla. PLoS ONE, 2013, 8, e61661.	2.5	89
4	Twoâ€Đimensional sixteen channel transmit/receive coil array for cardiac MRI at 7.0 T: Design, evaluation, and application. Journal of Magnetic Resonance Imaging, 2012, 36, 847-857.	3.4	76
5	MRIâ€Related Heating of Implants and Devices: A Review. Journal of Magnetic Resonance Imaging, 2021, 53, 1646-1665.	3.4	76
6	16â€channel bow tie antenna transceiver array for cardiac MR at 7.0 tesla. Magnetic Resonance in Medicine, 2016, 75, 2553-2565.	3.0	72
7	Comparison of three multichannel transmit/receive radiofrequency coil configurations for anatomic and functional cardiac MRI at 7.0T: implications for clinical imaging. European Radiology, 2012, 22, 2211-2220.	4.5	68
8	Progress and promises of human cardiac magnetic resonance at ultrahigh fields: A physics perspective. Journal of Magnetic Resonance, 2013, 229, 208-222.	2.1	61
9	On the RF heating of coronary stents at 7.0 Tesla MRI. Magnetic Resonance in Medicine, 2015, 74, 999-1010.	3.0	58
10	Design, evaluation and application of an eight channel transmit/receive coil array for cardiac MRI at 7.0T. European Journal of Radiology, 2013, 82, 752-759.	2.6	46
11	Detailing Radio Frequency Heating Induced by Coronary Stents: A 7.0 Tesla Magnetic Resonance Study. PLoS ONE, 2012, 7, e49963.	2.5	43
12	Assessment of the right ventricle with cardiovascular magnetic resonance at 7 Tesla. Journal of Cardiovascular Magnetic Resonance, 2013, 15, 23.	3.3	42
13	W(h)ither human cardiac and body magnetic resonance at ultrahigh fields? technical advances, practical considerations, applications, and clinical opportunities. NMR in Biomedicine, 2016, 29, 1173-1197.	2.8	40
14	Thermal magnetic resonance: physics considerations and electromagnetic field simulations up to 23.5 Tesla (1GHz). Radiation Oncology, 2015, 10, 201.	2.7	39
15	Electrodynamics and radiofrequency antenna concepts for human magnetic resonance at 23.5ÂT (1ÂGHz) and beyond. Magnetic Resonance Materials in Physics, Biology, and Medicine, 2016, 29, 641-656.	2.0	28
16	Sodium MRI of the human heart at 7.0 T: preliminary results. NMR in Biomedicine, 2015, 28, 967-975.	2.8	26
17	Eight-channel transceiver RF coil array tailored for ¹ H/ ¹⁹ F MR of the human knee and fluorinated drugs at 7.0 T. NMR in Biomedicine, 2015, 28, 726-737.	2.8	25
18	Magnetic resonance safety and compatibility of tantalum markers used in proton beam therapy for intraocular tumors: A 7.0 Tesla study. Magnetic Resonance in Medicine, 2017, 78, 1533-1546.	3.0	21

LUKAS WINTER

#	Article	IF	CITATIONS
19	Retrospectively-gated CINE 23Na imaging of the heart at 7.0 Tesla using density-adapted 3D projection reconstruction. Magnetic Resonance Imaging, 2015, 33, 1091-1097.	1.8	17
20	Open Source 3D Multipurpose Measurement System with Submillimetre Fidelity and First Application in Magnetic Resonance. Scientific Reports, 2017, 7, 13452.	3.3	17
21	Radiofrequency applicator concepts for thermal magnetic resonance of brain tumors at 297 MHz (7.0ÂTesla). International Journal of Hyperthermia, 2020, 37, 549-563.	2.5	17
22	Controlled Release of Therapeutics from Thermoresponsive Nanogels: A Thermal Magnetic Resonance Feasibility Study. Cancers, 2020, 12, 1380.	3.7	15
23	On the Economic Value of Open Source Hardware – Case Study of an Open Source Magnetic Resonance Imaging Scanner. Journal of Open Hardware, 2019, 3, .	0.5	15
24	On the Subjective Acceptance during Cardiovascular Magnetic Resonance Imaging at 7.0 Tesla. PLoS ONE, 2015, 10, e0117095.	2.5	14
25	Radiofrequency applicator concepts for simultaneous MR imaging and hyperthermia treatment of glioblastoma multiforme. Current Directions in Biomedical Engineering, 2017, 3, 473-477.	0.4	13
26	Wideband Selfâ€Grounded Bowâ€Tie Antenna for Thermal MR. NMR in Biomedicine, 2020, 33, e4274.	2.8	13
27	Parallel transmission medical implant safety testbed: Realâ€time mitigation of RF induced tip heating using timeâ€domain Eâ€field sensors. Magnetic Resonance in Medicine, 2020, 84, 3468-3484.	3.0	12
28	High peak and high average radiofrequency power transmit/receive switch for thermal magnetic resonance. Magnetic Resonance in Medicine, 2018, 80, 2246-2255.	3.0	9
29	Design, Implementation, Evaluation and Application of a 32-Channel Radio Frequency Signal Generator for Thermal Magnetic Resonance Based Anti-Cancer Treatment. Cancers, 2020, 12, 1720.	3.7	8
30	Rapid safety assessment and mitigation of radiofrequency induced implant heating using small root mean square sensors and the sensor matrix <i>Q_s</i> . Magnetic Resonance in Medicine, 2022, 87, 509-527.	3.0	8
31	BO-Shimming Methodology for Affordable and Compact Low-Field Magnetic Resonance Imaging Magnets. Frontiers in Physics, 2021, 9, .	2.1	5
32	Radiofrequency and microwave hyperthermia in cancer treatment. , 2022, , 281-311.		3
33	CoSimPy: An open-source python library for MRI radiofrequency Coil EM/Circuit Cosimulation. Computer Methods and Programs in Biomedicine, 2022, 216, 106684.	4.7	3
34	Experimental and computational evaluation of capacitive hyperthermia. International Journal of Hyperthermia, 2022, 39, 504-516.	2.5	2
35	On the subjective acceptance during cardiovascular magnetic resonance imaging at 7.0 Tesla. Journal of Cardiovascular Magnetic Resonance, 2015, 17, P13.	3.3	1
36	Human Cardiac Magnetic Resonance at Ultrahigh Fields. , 2019, , 142-160.e4.		0

Human Cardiac Magnetic Resonance at Ultrahigh Fields. , 2019, , 142-160.e4. 36