Jovica Ninkovic

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4493225/publications.pdf

Version: 2024-02-01

117625 149698 5,150 57 34 56 citations g-index h-index papers 60 60 60 7145 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Innate Immune Pathways Promote Oligodendrocyte Progenitor Cell Recruitment to the Injury Site in Adult Zebrafish Brain. Cells, 2022, 11, 520.	4.1	4
2	Parkinson's disease motor symptoms rescue by CRISPRaâ€reprogramming astrocytes into GABAergic neurons. EMBO Molecular Medicine, 2022, 14, e14797.	6.9	26
3	RNA-binding proteins balance brain function in health and disease. Physiological Reviews, 2021, 101, 1309-1370.	28.8	57
4	Adult neural stem cell activation in mice is regulated by the day/night cycle and intracellular calcium dynamics. Cell, 2021, 184, 709-722.e13.	28.9	54
5	Granulins Regulate Aging Kinetics in the Adult Zebrafish Telencephalon. Cells, 2020, 9, 350.	4.1	11
6	Defining the Adult Neural Stem Cell Niche Proteome Identifies Key Regulators of Adult Neurogenesis. Cell Stem Cell, 2020, 26, 277-293.e8.	11.1	109
7	Regeneration of the central nervous system-principles from brain regeneration in adult zebrafish. World Journal of Stem Cells, 2020, 12, 8-24.	2.8	52
8	Choroid plexusâ€derived miRâ€204 regulates the number of quiescent neural stem cells in the adult brain. EMBO Journal, 2019, 38, e100481.	7.8	52
9	Electroporation Method for In Vivo Delivery of Plasmid DNA in the Adult Zebrafish Telencephalon. Journal of Visualized Experiments, 2019, , .	0.3	1
10	Targeted removal of epigenetic barriers during transcriptional reprogramming. Nature Communications, 2019, 10, 2119.	12.8	58
11	The Surface Proteome of Adult Neural Stem Cells in Zebrafish Unveils Long-Range Cell-Cell Connections and Age-Related Changes in Responsiveness to IGF. Stem Cell Reports, 2019, 12, 258-273.	4.8	15
12	Fluorescence-Activated Cell Sorting-Based Isolation and Characterization of Neural Stem Cells from the Adult Zebrafish Telencephalon. Methods in Molecular Biology, 2019, 1938, 49-66.	0.9	3
13	Increasing Neural Stem Cell Division Asymmetry and Quiescence Are Predicted to Contribute to the Age-Related Decline in Neurogenesis. Cell Reports, 2018, 25, 3231-3240.e8.	6.4	35
14	The Aryl Hydrocarbon Receptor Pathway Defines the Time Frame for Restorative Neurogenesis. Cell Reports, 2018, 25, 3241-3251.e5.	6.4	34
15	One step generation of customizable gRNA vectors for multiplex CRISPR approaches through string assembly gRNA cloning (STAgR). PLoS ONE, 2018, 13, e0196015.	2.5	27
16	Understanding direct neuronal reprogramming â€" from pioneer factors to 3D chromatin. Current Opinion in Genetics and Development, 2018, 52, 65-69.	3.3	8
17	Time-Specific Effects of Spindle Positioning on Embryonic Progenitor Pool Composition and Adult Neural Stem Cell Seeding. Neuron, 2017, 93, 777-791.e3.	8.1	36
18	Changes in the Proliferative Program Limit Astrocyte Homeostasis in the Aged Post-Traumatic Murine Cerebral Cortex. Cerebral Cortex, 2017, 27, 4213-4228.	2.9	17

#	Article	IF	Citations
19	Anti-ACSA-2 defines a novel monoclonal antibody for prospective isolation of living neonatal and adult astrocytes. Glia, 2017, 65, 990-1004.	4.9	74
20	In situ detection of histone variants and modifications in mouse brain using imaging mass spectrometry. Proteomics, 2016, 16, 437-447.	2.2	19
21	Astrocytic Insulin Signaling Couples Brain Glucose Uptake with Nutrient Availability. Cell, 2016, 166, 867-880.	28.9	382
22	Adult neural stem cell behavior underlying constitutive and restorative neurogenesis in zebrafish. Neurogenesis (Austin, Tex.), 2016, 3, e1148101.	1.5	21
23	Single-cell in vivo imaging of adult neural stem cells in the zebrafish telencephalon. Nature Protocols, 2016, 11, 1360-1370.	12.0	15
24	Functional dissection of the Pax6 paired domain: Roles in neural tube patterning and peripheral nervous system development. Developmental Biology, 2016, 413, 86-103.	2.0	9
25	Dendritic Arborization Patterns of Small Juxtaglomerular Cell Subtypes within the Rodent Olfactory Bulb. Frontiers in Neuroanatomy, 2016, 10, 127.	1.7	16
26	In vivo odourant response properties of migrating adult-born neurons in the mouse olfactory bulb. Nature Communications, 2015, 6, 6349.	12.8	25
27	Fast clonal expansion and limited neural stem cell self-renewal in the adult subependymal zone. Nature Neuroscience, 2015, 18, 490-492.	14.8	160
28	Live imaging of adult neural stem cell behavior in the intact and injured zebrafish brain. Science, 2015, 348, 789-793.	12.6	156
29	Mcidas and GemC1/Lynkeas are key regulators for the generation of multiciliated ependymal cells in the adult neurogenic niche. Development (Cambridge), 2015, 142, 3661-74.	2.5	91
30	How to make neuronsâ€"thoughts on the molecular logic of neurogenesis in the central nervous system. Cell and Tissue Research, 2015, 359, 5-16.	2.9	13
31	A Time and Place for Understanding Neural Stem Cell Specification. Developmental Cell, 2014, 30, 114-115.	7.0	3
32	The BAF Complex Interacts with Pax6 in Adult Neural Progenitors to Establish a Neurogenic Cross-Regulatory Transcriptional Network. Cell Stem Cell, 2013, 13, 403-418.	11.1	196
33	Amplification of progenitors in the mammalian telencephalon includes a new radial glial cell type. Nature Communications, 2013, 4, 2125.	12.8	178
34	Fate specification in the adult brain – lessons for eliciting neurogenesis from glial cells. BioEssays, 2013, 35, 242-252.	2.5	41
35	Functional dissection of the paired domain of Pax6 reveals molecular mechanisms of coordinating neurogenesis and proliferation. Development (Cambridge), 2013, 140, 1123-1136.	2.5	67
36	Live imaging of astrocyte responses to acute injury reveals selective juxtavascular proliferation. Nature Neuroscience, 2013, 16, 580-586.	14.8	340

#	Article	IF	Citations
37	Increased radial glia quiescence, decreased reactivation upon injury and unaltered neuroblast behavior underlie decreased neurogenesis in the aging zebrafish telencephalon. Journal of Comparative Neurology, 2013, 521, 3099-3115.	1.6	79
38	Pax6 Interactions with Chromatin and Identification of Its Novel Direct Target Genes in Lens and Forebrain. PLoS ONE, 2013, 8, e54507.	2.5	72
39	Stab wound injury of the zebrafish telencephalon: A model for comparative analysis of reactive gliosis. Glia, 2012, 60, 343-357.	4.9	189
40	Prospective isolation of adult neural stem cells from the mouse subependymal zone. Nature Protocols, 2011, 6, 1981-1989.	12.0	58
41	Restrictions in time and space – new insights into generation of specific neuronal subtypes in the adult mammalian brain. European Journal of Neuroscience, 2011, 33, 1045-1054.	2.6	35
42	The role of Pax6 in regulating the orientation and mode of cell division of progenitors in the mouse cerebral cortex. Development (Cambridge), 2011, 138, 5067-5078.	2.5	94
43	The role of Pax6 in regulating the orientation and mode of cell division of progenitors in the mouse cerebral cortex. Journal of Cell Science, 2011, 124, e1-e1.	2.0	0
44	The Transcription Factor Pax6 Regulates Survival of Dopaminergic Olfactory Bulb Neurons via Crystallin αA. Neuron, 2010, 68, 682-694.	8.1	98
45	In Vivo Fate Mapping and Expression Analysis Reveals Molecular Hallmarks of Prospectively Isolated Adult Neural Stem Cells. Cell Stem Cell, 2010, 7, 744-758.	11.1	337
46	Vasculature Guides Migrating Neuronal Precursors in the Adult Mammalian Forebrain via Brain-Derived Neurotrophic Factor Signaling. Journal of Neuroscience, 2009, 29, 4172-4188.	3.6	310
47	AP2 \hat{I}^3 regulates basal progenitor fate in a region- and layer-specific manner in the developing cortex. Nature Neuroscience, 2009, 12, 1229-1237.	14.8	101
48	Adult generation of glutamatergic olfactory bulb interneurons. Nature Neuroscience, 2009, 12, 1524-1533.	14.8	325
49	Zebrafish reward mutants reveal novel transcripts mediating the behavioral effects of amphetamine. Genome Biology, 2009, 10, R81.	9.6	71
50	A Dlx2- and Pax6-Dependent Transcriptional Code for Periglomerular Neuron Specification in the Adult Olfactory Bulb. Journal of Neuroscience, 2008, 28, 6439-6452.	3.6	185
51	Gsk3 \hat{l}^2 /PKA and Gli1 regulate the maintenance of neural progenitors at the midbrain-hindbrain boundary in concert with E(Spl) factor activity. Development (Cambridge), 2008, 135, 3137-3148.	2.5	11
52	Distinct Modes of Neuron Addition in Adult Mouse Neurogenesis. Journal of Neuroscience, 2007, 27, 10906-10911.	3.6	226
53	Signaling in adult neurogenesis: from stem cell niche to neuronal networks. Current Opinion in Neurobiology, 2007, 17, 338-344.	4.2	135
54	The zebrafish as a model system for assessing the reinforcing properties of drugs of abuse. Methods, 2006, 39, 262-274.	3.8	188

Jovica Ninkovic

#	Article	IF	CITATIONS
55	Genetic identification of AChE as a positive modulator of addiction to the psychostimulant D-amphetamine in zebrafish. Journal of Neurobiology, 2006, 66, 463-475.	3.6	93
56	Segregation of telencephalic and eye-field identities inside the zebrafish forebrain territory is controlled by Rx3. Development (Cambridge), 2006, 133, 2925-2935.	2.5	95
57	Inhibition of neurogenesis at the zebrafish midbrain-hindbrain boundary by the combined and dose-dependent activity of a new hairy/E(spl)gene pair. Development (Cambridge), 2005, 132, 75-88.	2.5	43