David A X Nayagam

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4493058/publications.pdf

Version: 2024-02-01

471061 525886 31 1,422 17 27 citations h-index g-index papers 31 31 31 1567 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	First-in-Human Trial of a Novel Suprachoroidal Retinal Prosthesis. PLoS ONE, 2014, 9, e115239.	1.1	274
2	Visual prostheses for the blind. Trends in Biotechnology, 2013, 31, 562-571.	4.9	202
3	Soft, Flexible Freestanding Neural Stimulation and Recording Electrodes Fabricated from Reduced Graphene Oxide. Advanced Functional Materials, 2015, 25, 3551-3559.	7.8	117
4	Electrical stimulation of retinal ganglion cells with diamond and the development of an all diamond retinal prosthesis. Biomaterials, 2012, 33, 5812-5820.	5.7	109
5	A Wide-Field Suprachoroidal Retinal Prosthesis Is Stable and Well Tolerated Following Chronic Implantation. , 2013, 54, 3751.		103
6	<italic>In Vivo</italic> and <italic>In Vitro</italic> Comparison of the Charge Injection Capacity of Platinum Macroelectrodes. IEEE Transactions on Biomedical Engineering, 2015, 62, 849-857.	2.5	63
7	<i>In vivo</i> biocompatibility of boron doped and nitrogen included conductiveâ€diamond for use in medical implants. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2016, 104, 19-26.	1.6	52
8	The development of neural stimulators: a review of preclinical safety and efficacy studies. Journal of Neural Engineering, 2018, 15, 041004.	1.8	48
9	Powerful, Onset Inhibition in the Ventral Nucleus of the Lateral Lemniscus. Journal of Neurophysiology, 2005, 94, 1651-1654.	0.9	44
10	Development of a surgical procedure for implantation of a prototype suprachoroidal retinal prosthesis. Clinical and Experimental Ophthalmology, 2014, 42, 665-674.	1.3	44
11	Chronic Electrical Stimulation with a Suprachoroidal Retinal Prosthesis: A Preclinical Safety and Efficacy Study. PLoS ONE, 2014, 9, e97182.	1.1	44
12	Hermetic diamond capsules for biomedical implants enabled by gold active braze alloys. Biomaterials, 2015, 53, 464-474.	5.7	39
13	Biocompatibility of Immobilized Aligned Carbon Nanotubes. Small, 2011, 7, 1035-1042.	5.2	38
14	An In Vitro Model of Developmental Synaptogenesis Using Cocultures of Human Neural Progenitors and Cochlear Explants. Stem Cells and Development, 2013, 22, 901-912.	1.1	34
15	Safety Studies for a 44-Channel Suprachoroidal Retinal Prosthesis: A Chronic Passive Study. , 2018, 59, 1410.		29
16	A Second-Generation (44-Channel) Suprachoroidal Retinal Prosthesis: Interim Clinical Trial Results. Translational Vision Science and Technology, 2021, 10, 12.	1.1	28
17	Intracellular responses and morphology of rat ventral complex of the lateral lemniscus neurons in vivo. Journal of Comparative Neurology, 2006, 498, 295-315.	0.9	27
18	Development and Characterization of a Sucrose Microneedle Neural Electrode Delivery System. Advanced Biology, 2018, 2, 1700187.	3.0	25

#	Article	IF	CITATIONS
19	Effects of deafness and cochlear implant use on temporal response characteristics in cat primary auditory cortex. Hearing Research, 2014, 315, 1-9.	0.9	18
20	Cortical activation following chronic passive implantation of a wide-field suprachoroidal retinal prosthesis. Journal of Neural Engineering, 2014, 11, 046017.	1.8	15
21	Safety and efficacy of explanting or replacing suprachoroidal electrode arrays in a feline model. Clinical and Experimental Ophthalmology, 2015, 43, 247-258.	1.3	12
22	Functional Vision in the Real-World Environment With a Second-Generation (44-Channel) Suprachoroidal Retinal Prosthesis. Translational Vision Science and Technology, 2021, 10, 7.	1.1	10
23	Development of a Magnetic Attachment Method for Bionic Eye Applications. Artificial Organs, 2016, 40, E12-24.	1.0	9
24	Techniques for Processing Eyes Implanted With a Retinal Prosthesis for Localized Histopathological Analysis. Journal of Visualized Experiments, 2013, , .	0.2	8
25	Broadband Onset Inhibition Can Suppress Spectral Splatter in the Auditory Brainstem. PLoS ONE, 2015, 10, e0126500.	1.1	8
26	A Second-Generation (44-Channel) Suprachoroidal Retinal Prosthesis: Long-Term Observation of the Electrode–Tissue Interface. Translational Vision Science and Technology, 2022, 11, 12.	1.1	6
27	Techniques for Processing Eyes Implanted with a Retinal Prosthesis for Localized Histopathological Analysis: Part 2 Epiretinal Implants with Retinal Tacks. Journal of Visualized Experiments, 2015, , .	0.2	4
28	In vivo feasibility of epiretinal stimulation using ultrananocrystalline diamond electrodes. Journal of Neural Engineering, 2020, 17, 045014.	1.8	4
29	Classifying Retinal Degeneration in Histological Sections Using Deep Learning. Translational Vision Science and Technology, 2021, 10, 9.	1.1	4
30	Suprachoroidal Retinal Prostheses. , 2017, , 125-138.		4
31	A Flexible Wireless System for Preclinical Evaluation of Retinal Prosthesis. Sensors and Materials, 2018, , 269.	0.3	o