Bermudez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4492930/publications.pdf

Version: 2024-02-01

67	1,235	18	32
papers	citations	h-index	g-index
67	67	67	1353
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	All Solutionâ€Processed Chalcogenide Solar Cells – from Single Functional Layers Towards a 13.8% Efficient CIGS Device. Advanced Functional Materials, 2015, 25, 12-27.	14.9	84
2	Combined Raman scattering/photoluminescence analysis of Cu(In,Ga)Se2 electrodeposited layers. Solar Energy, 2014, 103, 89-95.	6.1	16
3	Process monitoring of chalcopyrite photovoltaic technologies by Raman spectroscopy: an application to low cost electrodeposition based processes. New Journal of Chemistry, 2011, 35, 453-460.	2.8	52
4	Real-Time Raman Scattering Analysis of the Electrochemical Growth of CulnSe2 Precursors for Culn(S,Se)2 Solar Cells. Journal of the Electrochemical Society, 2011, 158, H521.	2.9	5
5	Properties of In2S3 thin films deposited onto ITO/glass substrates by chemical bath deposition. Journal of Physics and Chemistry of Solids, 2010, 71, 1629-1633.	4.0	37
6	Phase evolution during CuInSe2 electrodeposition on polycrystalline Mo. Thin Solid Films, 2010, 518, 3674-3679. Representation of the control of the contro	1.8	13
7	xmins:xocs="http://www.eisevier.com/xmi/xocs/dtd" xmins:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.elsevier.com/xml/ja/dtd" xmlns:xsi="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/structebib/dtd" xmlns:sb="http://www.elsevier.com/xml/common/xml/common/structebib/dtd" xmlns:sb="http://www.elsevier.com/xml/common/xml/com/xml/com/xml/com/xml/com/xml/com/xml/com/xml/com/xml/com/xml/com/xml/com/xml/com/xml/com/xml/com/xml/com/xml/com/xml/c	1.8	3
8	Electrodeposition based synthesis of S-rich Culn(S,Se)2 layers for photovoltaic applications: Raman scattering analysis of electrodeposited CulnSe2 precursors. Thin Solid Films, 2009, 517, 2163-2166.	1.8	21
9	Compositional engineering of chemical bath deposited (Zn,Cd)S buffer layers for electrodeposited Culn(S,Se) ₂ and coevaporated Cu(ln,Ga)Se ₂ solar cells. Progress in Photovoltaics: Research and Applications, 2009, 17, 1-9.	8.1	28
10	Analysis of sulphurisation processes of electrodeposited S-rich CuIn(S,Se)2 layers for photovoltaic applications. Thin Solid Films, 2009, 517, 2264-2267.	1.8	12
11	Key role of Cu–Se binary phases in electrodeposited CuInSe2 precursors on final distribution of Cu–S phases in CuIn(S,Se)2 absorbers. Thin Solid Films, 2009, 517, 2268-2271.	1.8	29
12	Evaluation of diffusion-recombination parameters in electrodeposited Culn(S, Se)2 solar cells by means of electron beam induced current experiments and modelling. Superlattices and Microstructures, 2009, 45, 161-167.	3.1	6
13	Fabrication of Periodically Poled Swift Ion-irradiation Waveguides in LiNbO3. Ferroelectrics, 2009, 390, 29-35.	0.6	5
14	Analysis of electronic transport properties of thin film Culn(S,Se)2 solar cells based on electrodeposition. Thin Solid Films, 2008, 516, 6999-7003.	1.8	7
15	Raman scattering microcrystalline assessment and device quality control of electrodeposited Culn(S,Se)2 based solar cells. Thin Solid Films, 2008, 516, 7021-7025.	1.8	12
16	Engineered periodic-poled lithium niobate structures doped with rare earths for multi-self-frequency conversion. Journal of Crystal Growth, 2008, 310, 1324-1330.	1.5	1
17	Growth and characterization of CdTe:Ge:Yb. Journal of Crystal Growth, 2008, 310, 2076-2079.	1.5	1
18	Analysis of S-rich Culn(S,Se)2 layers for photovoltaic applications: Influence of the sulfurization temperature on the crystalline properties of electrodeposited and sulfurized CulnSe2 precursors. Journal of Applied Physics, 2008, 103, 123109.	2.5	34

#	Article	IF	Citations
19	Effect of Yb concentration on the resistivity and lifetime of CdTe:Ge:Yb codoped crystals. Applied Physics Letters, 2007, 91, .	3.3	12
20	Raman microprobe characterization of electrodeposited S-rich Culn(S,Se)2 for photovoltaic applications: Microstructural analysis. Journal of Applied Physics, 2007, 101, 103517.	2.5	66
21	Hexagonal CdTe-Like Rods Prompted from Bi2Te3Droplets. Journal of Physical Chemistry C, 2007, 111, 5588-5591.	3.1	12
22	Physical properties of Bi doped CdTe thin films grown by CSVT and their influence on the CdS/CdTe solar cells PV-properties. Thin Solid Films, 2007, 515, 5819-5823.	1.8	17
23	Continuous-Wave Yellow Laser Based on Nd-Doped Periodically Poled Lithium Niobate. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13, 750-755.	2.9	12
24	Bi doped CdTe: increasing potentialities of CdTe based solar cells. Journal of Physics Condensed Matter, 2006, 18, 7163-7169.	1.8	10
25	Surface Enhanced Second Harmonic Generation from Macrocycle, Catenane, and Rotaxane Thin Films:  Experiments and Theory. Journal of Physical Chemistry B, 2006, 110, 7648-7652.	2.6	9
26	Photoluminescence and photoconductivity in CdTe crystals doped with Bi. Journal of Applied Physics, 2006, 100, 104901.	2.5	33
27	Passivation properties of CdS thin films grown by chemical bath deposition on GaSb: the influence of the S/Cd ratio in the solution and of the CdS layer thickness on the surface recombination velocity. Semiconductor Science and Technology, 2006, 21, 76-80.	2.0	13
28	Influence of stoichiometry on phase transition pressure of LiNbO3. Applied Physics Letters, 2006, 89, 261908.	3.3	11
29	Determination of the Ta and Nb ratio in LiNb1â^'xTaxO3 by total reflection X-ray fluorescence spectrometry. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2005, 60, 231-235.	2.9	10
30	Comparison between vertical Bridgman and feeding techniques for GaInSb alloy growths. Journal of Crystal Growth, 2005, 275, e537-e542.	1.5	3
31	Formation of CdTe columnar structures prompted by In- and Ga-rich nanodots. Journal of Crystal Growth, 2005, 275, e1131-e1135.	1.5	7
32	Effect of the shouldering angle on the shape of the solid–liquid interface and temperature fields in sillenite-type crystals growth. Journal of Crystal Growth, 2005, 279, 82-87.	1.5	10
33	Cathodoluminescence study of ytterbium doped GaSb. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2005, 121, 108-111.	3.5	1
34	Characterisation of erbium–erbium oxide bilayer structures deposited on GaSb substrates by electron beam evaporation. Applied Surface Science, 2005, 239, 193-200.	6.1	1
35	Characterization of structural and photoinduced defects in pure and doped lithium niobate. Physica Status Solidi C: Current Topics in Solid State Physics, 2005, 2, 159-162.	0.8	2
36	Study of defects in InxGa1-xSb bulk crystals. Physica Status Solidi C: Current Topics in Solid State Physics, 2005, 2, 1897-1901.	0.8	0

#	Article	IF	CITATIONS
37	Transparent conducting oxides as selective filters in thermophotovoltaic devices. Journal of Physics Condensed Matter, 2005, 17, 6377-6384.	1.8	21
38	Temperature effects in proton exchanged LiNbO3 waveguides. Applied Physics B: Lasers and Optics, 2004, 79, 845-849.	2.2	15
39	Optical bleaching of Cr3+ luminescence in near stoichiometric LiNbO3 crystals codoped with MgO. Journal of Luminescence, 2004, 108, 55-58.	3.1	3
40	Simulation of global heat transfer in the Czochralski process for BGO sillenite crystals. Journal of Crystal Growth, 2004, 266, 103-108.	1.5	25
41	Cathodoluminescence study of InxGa1â^'xSb crystals grown by the Bridgman method. Journal of Crystal Growth, 2004, 268, 52-58.	1.5	2
42	Determination of Li and Nb in Congruent Lithium Niobate by ICP-MS. Chemistry of Materials, 2004, 16, 3593-3596.	6.7	10
43	Evolution of the Structural Properties in Ferroelectric LiNb $1\hat{a}^{\circ}$ xTaxO3Compound with Variation in Ta Composition. Ferroelectrics, 2004, 304, 159-162.	0.6	1
44	Relationship between photorefractive activity and Raman scattering in lithium niobate crystals. Optical Materials, 2004, 27, 81-84.	3.6	2
45	Luminescence of the Cr3+ R-lines in pure and MgO co-doped near stoichiometric LiNbO3:Cr crystals. Chemical Physics Letters, 2003, 369, 519-524.	2.6	7
46	Rotaxanes––novel photonic molecules. Optical Materials, 2003, 21, 39-44.	3.6	12
47	Surface-relief diffraction gratings based on selective etching of periodically poled lithium niobate. Applied Physics Letters, 2003, 83, 5145-5147.	3.3	6
48	Domain wall width of lithium niobate poled during growth. Journal Physics D: Applied Physics, 2003, 36, 969-974.	2.8	3
49	Study of induced structural defects on GaSb films grown on different substrates by the liquid phase epitaxy technique. Journal of Physics Condensed Matter, 2002, 14, 12755-12759.	1.8	3
50	Phase separation during the melting of oxide borates LnCa4O(BO3)3 (Ln=Y, Gd). Materials Research Bulletin, 2002, 37, 1737-1747.	5.2	21
51	Compositional study of LiNbO3 thin films grown by liquid phase epitaxy. Journal of Crystal Growth, 2001, 226, 488-492.	1.5	13
52	Influence of Hf ions in the formation of periodically poled lithium niobate structures. Journal of Physics Condensed Matter, 2001, 13, 1337-1342.	1.8	8
53	Continuous-wave self-pumped optical parametric oscillator based on Yb3+-doped bulk periodically poled LiNbO3 (MgO). Applied Physics Letters, 2001, 79, 293-295.	3.3	23
54	Laser frequency converter for continuous-wave tunable Ti:sapphire lasers based on aperiodically poled LiNbO3:Nd3+. Applied Physics Letters, 2001, 79, 1751-1753.	3.3	17

#	Article	IF	CITATIONS
55	Domain walls characterization of the opposite domain lithium niobate structures. Journal of Crystal Growth, 2000, 219, 413-418.	1.5	7
56	Determination of the Li/Nb ratio in LiNbO3 crystals grown by Czochralski method with K2O added to the melt. Journal of Crystal Growth, 2000, 210, 670-676.	1.5	41
57	On the compositional nature of bulk doped periodic poled lithium niobate crystals. Solid State Communications, 2000, 114, 555-559.	1.9	16
58	Influencing intramolecular motion with an alternating electric field. Nature, 2000, 406, 608-611.	27.8	223
59	Bulk periodically poled lithium niobate doped with Yb3+ ions: Growth and characterization. Applied Physics Letters, 1999, 74, 1534-1536.	3.3	22
60	Er incorporation into congruent LiNbO3 crystals. Solid State Communications, 1999, 112, 699-703.	1.9	13
61	Bulk periodic poled lithium niobate crystals doped with Er and Yb. Journal of Crystal Growth, 1999, 200, 185-190.	1.5	35
62	Opposite domain formation in Er-doped LiNbO3 bulk crystals grown by the off-centered Czochralski technique. Journal of Crystal Growth, 1999, 203, 179-185.	1.5	12
63	On the effect of Li diffusion in Er-doped bulk periodic poled lithium niobate crystals. Journal of Crystal Growth, 1999, 205, 328-332.	1.5	9
64	On the cooling effect in the formation of periodic poled lithium niobate crystals grown by Cz technique. Journal of Crystal Growth, 1999, 207, 303-307.	1.5	8
65	Growth and second harmonic generation characterization of Er3+ doped bulk periodically poled LiNbO3. Applied Physics Letters, 1998, 73, 593-595.	3.3	47
66	The effect of native defects on the domain structures of :Fe - a case study by means of the addition of MgO and to the congruent melt. Journal of Physics Condensed Matter, 1997, 9, 6097-6101.	1.8	8
67	In situ poling of LiNbO3 bulk crystal below the Curie temperature by application of electric field after growth. Journal of Crystal Growth, 1996, 169, 409-412.	1.5	7