List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4492623/publications.pdf Version: 2024-02-01

		117571	123376
117	4,384	34	61
papers	citations	h-index	g-index
117	117	117	5785
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Tumor pH-responsive flower-like micelles of poly(l-lactic acid)-b-poly(ethylene) Tj ETQq1 1 0.784314 rgBT /Overlo	ock_10 Tf 5 4.8	50 742 Td (gl
2	Doxorubicin‣oaded Polymeric Micelle Overcomes Multidrug Resistance of Cancer by Doubleâ€Targeting Folate Receptor and Early Endosomal pH. Small, 2008, 4, 2043-2050.	5.2	303
3	A Smart Polysaccharide/Drug Conjugate for Photodynamic Therapy. Angewandte Chemie - International Edition, 2011, 50, 1644-1647.	7.2	239
4	Doxorubicin-loaded human serum albumin nanoparticles surface-modified with TNF-related apoptosis-inducing ligand and transferrin for targeting multiple tumor types. Biomaterials, 2012, 33, 1536-1546.	5.7	210
5	A Virusâ€Mimetic Nanogel Vehicle. Angewandte Chemie - International Edition, 2008, 47, 2418-2421.	7.2	208
6	Rabies Virusâ€Inspired Silicaâ€Coated Gold Nanorods as a Photothermal Therapeutic Platform for Treating Brain Tumors. Advanced Materials, 2017, 29, 1605563.	11.1	193
7	Binary mixing of micelles using Pluronics for a nano-sized drug delivery system. Colloids and Surfaces B: Biointerfaces, 2011, 82, 190-195.	2.5	102
8	Liposomal Formulations for Nose-to-Brain Delivery: Recent Advances and Future Perspectives. Pharmaceutics, 2019, 11, 540.	2.0	101
9	lrinotecan-encapsulated double-reverse thermosensitive nanocarrier system for rectal administration. Drug Delivery, 2017, 24, 502-510.	2.5	81
10	Transferrin-Conjugated Polymeric Nanoparticle for Receptor-Mediated Delivery of Doxorubicin in Doxorubicin-Resistant Breast Cancer Cells. Pharmaceutics, 2019, 11, 63.	2.0	79
11	Folate receptor-mediated celastrol and irinotecan combination delivery using liposomes for effective chemotherapy. Colloids and Surfaces B: Biointerfaces, 2018, 170, 718-728.	2.5	78
12	Irinotecan-loaded double-reversible thermogel with improved antitumor efficacy without initial burst effect and toxicity for intramuscular administration. Acta Biomaterialia, 2017, 54, 239-248.	4.1	69
13	Electrostatic charge conversion processes in engineered tumor-identifying polypeptides for targeted chemotherapy. Biomaterials, 2012, 33, 1884-1893.	5.7	66
14	Hyaluronated fullerenes with photoluminescent and antitumoral activity. Chemical Communications, 2013, 49, 282-284.	2.2	65
15	Gold nanocluster-loaded hybrid albumin nanoparticles with fluorescence-based optical visualization and photothermal conversion for tumor detection/ablation. Journal of Controlled Release, 2019, 304, 7-18.	4.8	62
16	A smart flower-like polymeric micelle for pH-triggered anticancer drug release. International Journal of Pharmaceutics, 2009, 375, 163-169.	2.6	61
17	pH-sensitive properties of surface charge-switched multifunctional polymeric micelle. International Journal of Pharmaceutics, 2009, 376, 134-140.	2.6	57
18	One-pot synthesis of carbon dots with intrinsic folic acid for synergistic imaging-guided photothermal therapy of prostate cancer cells. Biomaterials Science, 2019, 7, 5187-5196.	2.6	52

#	Article	IF	CITATIONS
19	Principles and applications of nanomaterial-based hyperthermia in cancer therapy. Archives of Pharmacal Research, 2020, 43, 46-57.	2.7	49
20	Poly(l-aspartic acid) nanogels for lysosome-selective antitumor drug delivery. Colloids and Surfaces B: Biointerfaces, 2013, 101, 298-306.	2.5	48
21	Doxorubicin and paclitaxel co-bound lactosylated albumin nanoparticles having targetability to hepatocellular carcinoma. Colloids and Surfaces B: Biointerfaces, 2017, 152, 183-191.	2.5	47
22	Albumin nanoparticles with synergistic antitumor efficacy against metastatic lung cancers. Colloids and Surfaces B: Biointerfaces, 2017, 158, 157-166.	2.5	47
23	Emerging potential of stimulus-responsive nanosized anticancer drug delivery systems for systemic applications. Archives of Pharmacal Research, 2018, 41, 111-129.	2.7	46
24	A novel pH-responsive polysaccharidic ionic complex for proapoptotic d-(KLAKLAK)2 peptide delivery. Chemical Communications, 2011, 47, 3852.	2.2	44
25	PEGylated thermosensitive lipid-coated hollow gold nanoshells for effective combinational chemo-photothermal therapy of pancreatic cancer. Colloids and Surfaces B: Biointerfaces, 2017, 160, 73-83.	2.5	44
26	pH-Responsive hyaluronated liposomes for docetaxel delivery. International Journal of Pharmaceutics, 2018, 547, 377-384.	2.6	44
27	Chlorella-gold nanorods hydrogels generating photosynthesis-derived oxygen and mild heat for the treatment of hypoxic breast cancer. Journal of Controlled Release, 2019, 294, 77-90.	4.8	44
28	Triblock copolymers for nano-sized drug delivery systems. Journal of Pharmaceutical Investigation, 2017, 47, 27-35.	2.7	43
29	The Reversal of Drug-Resistance in Tumors Using a Drug-Carrying Nanoparticular System. International Journal of Molecular Sciences, 2009, 10, 3776-3792.	1.8	42
30	Hyaluronated nanoparticles with pH- and enzyme-responsive drug release properties. Colloids and Surfaces B: Biointerfaces, 2014, 116, 359-364.	2.5	42
31	Nanomedicines for oral administration based on diverse nanoplatform. Journal of Pharmaceutical Investigation, 2016, 46, 351-362.	2.7	38
32	Beta-carotene-bound albumin nanoparticles modified with chlorin e6 for breast tumor ablation based on photodynamic therapy. Colloids and Surfaces B: Biointerfaces, 2018, 171, 123-133.	2.5	37
33	Novel revaprazan-loaded gelatin microsphere with enhanced drug solubility and oral bioavailability. Journal of Microencapsulation, 2018, 35, 421-427.	1.2	36
34	New potential application of hydroxypropyl-β-cyclodextrin in solid self-nanoemulsifying drug delivery system and solid dispersion. Carbohydrate Polymers, 2021, 271, 118433.	5.1	35
35	A feasibility study of a pH sensitive nanomedicine using doxorubicin loaded poly(aspartic) Tj ETQq1 1 0.784314 1152.	rgBT /Ove 2.9	erlock 10 Tf 5 34
36	Facile synthesis of multilayered polysaccharidic vesicles. Journal of Controlled Release, 2014, 187, 83-90.	4.8	33

KYUNG TAEK OH

#	Article	IF	CITATIONS
37	Development of novel cilostazol–loaded solid SNEDDS using a SPG membrane emulsification technique: Physicochemical characterization and in vivo evaluation. Colloids and Surfaces B: Biointerfaces, 2017, 150, 216-222.	2.5	33
38	Recent advance of pH-sensitive nanocarriers targeting solid tumors. Journal of Pharmaceutical Investigation, 2017, 47, 383-394.	2.7	33
39	Comparison of a revaprazan-loaded solid dispersion, solid SNEDDS and inclusion compound: Physicochemical characterisation and pharmacokinetics. Colloids and Surfaces B: Biointerfaces, 2018, 162, 420-426.	2.5	33
40	A nano-complex system to overcome antagonistic photo-chemo combination cancer therapy. Journal of Controlled Release, 2019, 295, 164-173.	4.8	33
41	pH-sensitive short worm-like micelles targeting tumors based on the extracellular pH. Journal of Materials Chemistry B, 2014, 2, 6363-6370.	2.9	32
42	Development of a novel l-sulpiride-loaded quaternary microcapsule: Effect of TPGS as an absorption enhancer on physicochemical characterization and oral bioavailability. Colloids and Surfaces B: Biointerfaces, 2016, 147, 250-257.	2.5	30
43	Small gold nanorods-loaded hybrid albumin nanoparticles with high photothermal efficacy for tumor ablation. Colloids and Surfaces B: Biointerfaces, 2019, 179, 340-351.	2.5	30
44	Development of a pH-sensitive polymer using poly(aspartic acid-graft-imidazole)-block-poly(ethylene) Tj ETQq0 (0 0 rgBT /C	overlock 10 Tf
45	Gold Nanoparticles Bearing a Tumor pH-Sensitive Cyclodextrin Cap. ACS Applied Materials & Interfaces, 2018, 10, 24450-24458.	4.0	28
46	Dendritic Cell-Targeted pH-Responsive Extracellular Vesicles for Anticancer Vaccination. Pharmaceutics, 2019, 11, 54.	2.0	27
47	Near infrared light-responsive heat-emitting hemoglobin hydrogels for photothermal cancer therapy. Colloids and Surfaces B: Biointerfaces, 2019, 176, 156-166.	2.5	27
48	Comparison of three different types of cilostazol-loaded solid dispersion: Physicochemical characterization and pharmacokinetics in rats. Colloids and Surfaces B: Biointerfaces, 2017, 154, 89-95.	2.5	26
49	Comparison of Three Different Aqueous Microenvironments for Enhancing Oral Bioavailability of Sildenafil: Solid Self-Nanoemulsifying Drug Delivery System, Amorphous Microspheres and Crystalline Microspheres. International Journal of Nanomedicine, 2021, Volume 16, 5797-5810.	3.3	24
50	Tumor-Homing pH-Sensitive Extracellular Vesicles for Targeting Heterogeneous Tumors. Pharmaceutics, 2020, 12, 372.	2.0	23
51	3-Diethylaminopropyl-bearing glycol chitosan as a protein drug carrier. Colloids and Surfaces B: Biointerfaces, 2011, 84, 585-590.	2.5	21
52	A novel solid self-nanoemulsifying drug delivery system (S-SNEDDS) for improved stability and oral bioavailability of an oily drug, 1-palmitoyl-2-linoleoyl-3-acetyl-rac-glycerol. Drug Delivery, 2017, 24, 1018-1025.	2.5	21
53	γ-Cyclodextrin-phenylacetic acid mesh as a drug trap. Carbohydrate Polymers, 2018, 184, 390-400.	5.1	21

54Revaprazan-loaded surface-modified solid dispersion: physicochemical characterization and <i>in
vivo</i>1.121541.121

#	Article	IF	CITATIONS
55	A nanosized delivery system of superparamagnetic iron oxide for tumor MR imaging. International Journal of Pharmaceutics, 2012, 439, 342-348.	2.6	19
56	Development of a new tri-block copolymer with a functional end and its feasibility for treatment of metastatic breast cancer. Colloids and Surfaces B: Biointerfaces, 2016, 144, 73-80.	2.5	19
57	A novel prototype of albumin nanoparticles fabricated by supramolecular cyclodextrin-adamantane association. Colloids and Surfaces B: Biointerfaces, 2016, 147, 281-290.	2.5	19
58	Extremely small-sized globular poly(ethylene glycol)-cyclic RGD conjugates targeting integrin αvβ3 in tumor cells. International Journal of Pharmaceutics, 2017, 528, 1-7.	2.6	19
59	Facile fabrication of highly photothermal-effective albumin-assisted gold nanoclusters for treating breast cancer. International Journal of Pharmaceutics, 2018, 553, 363-374.	2.6	19
60	<p>Indocyanine Green and Curcumin Co-Loaded Nano-Fireball-Like Albumin Nanoparticles Based on Near-Infrared-Induced Hyperthermia for Tumor Ablation</p> . International Journal of Nanomedicine, 2020, Volume 15, 6469-6484.	3.3	19
61	Preparation of chlorine e6-conjugated single-wall carbon nanotube for photodynamic therapy. Macromolecular Research, 2011, 19, 848-852.	1.0	18
62	Poisonous Caterpillar-Inspired Chitosan Nanofiber Enabling Dual Photothermal and Photodynamic Tumor Ablation. Pharmaceutics, 2019, 11, 258.	2.0	18
63	Development of novel prasugrel base microsphere-loaded tablet with enhanced stability: Physicochemical characterization and in vivo evaluation in beagle dogs. Colloids and Surfaces B: Biointerfaces, 2016, 146, 754-761.	2.5	17
64	Development of a docetaxel micellar formulation using poly(ethylene) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 38 targeted drug delivery. Drug Delivery, 2018, 25, 1362-1371.	7 Td (glycc 2.5	bl)–polylactio 17
65	Cyclic RGD-Conjugated Hyaluronate Dot Bearing Cleavable Doxorubicin for Multivalent Tumor Targeting. Biomacromolecules, 2020, 21, 2525-2535.	2.6	17
66	Hoechst 33258–conjugated hyaluronated fullerene for efficient photodynamic tumor therapy and necrotic tumor targeting. Journal of Bioactive and Compatible Polymers, 2015, 30, 275-288.	0.8	16
67	Cyclic RGD-conjugated Pluronic [®] blending system for active, targeted drug delivery. International Journal of Nanomedicine, 2018, Volume 13, 4627-4639.	3.3	16
68	A Mixed Micellar Formulation for the Transdermal Delivery of an Indirubin Analog. Pharmaceutics, 2020, 12, 175.	2.0	16
69	Hyperthermal paclitaxel-bound albumin nanoparticles co-loaded with indocyanine green and hyaluronidase for treating pancreatic cancers. Archives of Pharmacal Research, 2021, 44, 182-193.	2.7	16
70	Development of a robust pH-sensitive polyelectrolyte ionomer complex for anticancer nanocarriers. International Journal of Nanomedicine, 2016, 11, 703.	3.3	15
71	A charge-reversible nanocarrier using PEG-PLL(- g -Ce6, DMA)-PLA for photodynamic therapy. International Journal of Nanomedicine, 2017, Volume 12, 6185-6196.	3.3	15
72	Preparation of multifunctional polymeric micelles for antiviral treatment. Macromolecular Research, 2010, 18, 747-752.	1.0	14

#	Article	IF	CITATIONS
73	Physicochemical characterizations of amphiphilic block copolymers with different MWs and micelles for development of anticancer drug nanocarriers. Macromolecular Research, 2012, 20, 944-953.	1.0	14
74	Development of pH-responsive poly(\hat{l}^3 -cyclodextrin) derivative nanoparticles. Colloids and Surfaces B: Biointerfaces, 2014, 119, 14-21.	2.5	14
75	A stable nanoplatform for antitumor activity using PEG-PLL-PLA triblock co-polyelectrolyte. Colloids and Surfaces B: Biointerfaces, 2017, 153, 10-18.	2.5	14
76	Effect of inorganic mesoporous carriers on 1-palmitoyl-2-linoleoyl-3-acetyl-rac-glycerol-loaded solid self-emulsifying drug delivery system: Physicochemical characterization and bioavailability in rats. Colloids and Surfaces B: Biointerfaces, 2017, 160, 331-336.	2.5	14
77	A conjugation of stearic acid to apotransferrin, fattigation-platform, as a core to form self-assembled nanoparticles: Encapsulation of a hydrophobic paclitaxel and receptor-driven cancer targeting. Journal of Drug Delivery Science and Technology, 2017, 41, 222-230.	1.4	14
78	Combined Antitumor Therapy Using In Situ Injectable Hydrogels Formulated with Albumin Nanoparticles Containing Indocyanine Green, Chlorin e6, and Perfluorocarbon in Hypoxic Tumors. Pharmaceutics, 2022, 14, 148.	2.0	14
79	Poly(l-aspartic acid) derivative soluble in a volatile organic solvent for biomedical application. Colloids and Surfaces B: Biointerfaces, 2012, 97, 190-195.	2.5	13
80	Synergistic photodynamic therapeutic effect of indole-3-acetic acid using a pH sensitive nano-carrier based on poly(aspartic acid- <i>graft</i> -imidazole)-poly(ethylene glycol). Journal of Materials Chemistry B, 2017, 5, 8498-8505.	2.9	13
81	Development of pH-responsive starch–glycol chitosan nanogels for proapoptotic (KLAKLAK) ₂ peptide delivery. Journal of Bioactive and Compatible Polymers, 2017, 32, 345-354.	0.8	13
82	Co-delivery of D-(KLAKLAK)2 Peptide and Chlorin e6 using a Liposomal Complex for Synergistic Cancer Therapy. Pharmaceutics, 2019, 11, 293.	2.0	13
83	Tumor-Targeting Liposomes with Transient Holes Allowing Intact Rituximab Internally. Biomacromolecules, 2021, 22, 723-731.	2.6	13
84	Co-delivery of <scp>d</scp> -(KLAKLAK) ₂ peptide and doxorubicin using a pH-sensitive nanocarrier for synergistic anticancer treatment. Journal of Materials Chemistry B, 2019, 7, 4299-4308.	2.9	12
85	Development of AE147 Peptide-Conjugated Nanocarriers for Targeting uPAR-Overexpressing Cancer Cells. International Journal of Nanomedicine, 2021, Volume 16, 5437-5449.	3.3	12
86	Facile Synthesis of Multimeric Micelles. Angewandte Chemie - International Edition, 2012, 51, 7287-7291.	7.2	11
87	Functional poly(l-lysine) derivative nanogels with acidic pH-pulsed antitumor drug release properties. Journal of Pharmaceutical Investigation, 2014, 44, 351-356.	2.7	10
88	pH-Responsive globular poly(ethylene glycol) for photodynamic tumor therapy. Colloids and Surfaces B: Biointerfaces, 2016, 148, 173-180.	2.5	10
89	Highly Red Light-Emitting Erbium- and Lutetium-Doped Core-Shell Upconverting Nanoparticles Surface-Modified with PEG-Folic Acid/TCPP for Suppressing Cervical Cancer HeLa Cells. Pharmaceutics, 2020, 12, 1102.	2.0	10
90	Transferrin-Conjugated pH-Responsive γ-Cyclodextrin Nanoparticles for Antitumoral Topotecan Delivery. Pharmaceutics, 2020, 12, 1109.	2.0	10

#	Article	IF	CITATIONS
91	An On-Demand pH-Sensitive Nanocluster for Cancer Treatment by Combining Photothermal Therapy and Chemotherapy. Pharmaceutics, 2020, 12, 839.	2.0	10
92	Photoreactive-proton-generating hyaluronidase/albumin nanoparticles-loaded PEG-hydrogel enhances antitumor efficacy and disruption of the hyaluronic acid extracellular matrix in AsPC-1 tumors. Materials Today Bio, 2021, 12, 100164.	2.6	10
93	A nanosystem for water-insoluble drugs prepared by a new technology, nanoparticulation using a solid lipid and supercritical fluid. Archives of Pharmacal Research, 2013, 36, 1369-1376.	2.7	9
94	Photoresponsive hyaluronate nanogel as an anticancer drug carrier. Polymers for Advanced Technologies, 2013, 24, 791-796.	1.6	9
95	Novel dabigatran etexilate hemisuccinate-loaded polycap: Physicochemical characterisation and in vivo evaluation in beagle dogs. International Journal of Pharmaceutics, 2017, 525, 60-70.	2.6	9
96	Characterization and pharmacokinetic study of itraconazole solid dispersions prepared by solvent-controlled precipitation and spray-dry methods. Journal of Pharmacy and Pharmacology, 2017, 69, 1707-1715.	1.2	9
97	A pH-Sensitive Polymer for Cancer Targeting Prepared by One-Step Modulation of Functional Side Groups. Macromolecular Research, 2019, 27, 795-802.	1.0	9
98	Preparation and Characterization of a Lutein Solid Dispersion to Improve Its Solubility and Stability. AAPS PharmSciTech, 2021, 22, 169.	1.5	9
99	Artificial nano-pin as a temporal molecular glue for the targeting of acidic tumor cells. Polymers for Advanced Technologies, 2014, 25, 842-850.	1.6	8
100	Mitochondria-selective photodynamic tumor therapy using globular PEG nanoparticles. Macromolecular Research, 2016, 24, 634-639.	1.0	8
101	Characterization of a triblock copolymer, poly(ethylene glycol)-polylactide-poly(ethylene glycol), with different structures for anticancer drug delivery applications. Polymer Bulletin, 2017, 74, 1595-1609.	1.7	8
102	Alendronate/cRGD-Decorated Ultrafine Hyaluronate Dot Targeting Bone Metastasis. Biomedicines, 2020, 8, 492.	1.4	8
103	Development of pHâ€sensitive nanogels for cancer treatment using crosslinked poly(aspartic) Tj ETQq1 1 0.784 135, 46268.	1314 rgBT 1.3	/Overlock 10 7
104	Particle-in-Particle Platform for Nanoconfinement-Induced Oncothermia. ACS Applied Bio Materials, 2018, 1, 1927-1941.	2.3	7
105	Facile fabrication of hyaluronated starch nanogels for efficient docetaxel delivery. Journal of Bioactive and Compatible Polymers, 2019, 34, 321-330.	0.8	7
106	Photo-Based Nanomedicines Using Polymeric Systems in the Field of Cancer Imaging and Therapy. Biomedicines, 2020, 8, 618.	1.4	7
107	<p>A nano-sized blending system comprising identical triblock copolymers with different hydrophobicity for fabrication of an anticancer drug nanovehicle with high stability and solubilizing capacity</p> . International Journal of Nanomedicine, 2019, Volume 14, 3629-3644.	3.3	6
108	Development of pH â€responsive cyclodextrin nanoparticles for tumorâ€specific photodynamic therapy. Polymers for Advanced Technologies, 2020, 31, 3228-3237.	1.6	6

#	Article	IF	CITATIONS
109	Development of a gene carrier using a triblock co-polyelectrolyte with poly(ethylene) Tj ETQq1 1 0.784314 rgBT 280-292.	Overlock : 0.8	10 Tf 50 745 5
110	Preparation of Gastro-retentive Tablets Employing Controlled Superporous Networks for Improved Drug Bioavailability. AAPS PharmSciTech, 2020, 21, 320.	1.5	5
111	Development of a pH-Responsive Polymer Based on Hyaluronic Acid Conjugated with Imidazole and Dodecylamine for Nanomedicine Delivery. Macromolecular Research, 2022, 30, 547-556.	1.0	5
112	Formulation of novel dry powder inhalation for fluticasone propionate and salmeterol xinafoate with capsule-based device. Pharmaceutical Development and Technology, 2018, 23, 158-166.	1.1	4
113	Development of tiotropium inhalation formulations for the treatment of chronic obstructive pulmonary disease. Journal of Pharmaceutical Investigation, 2013, 43, 71-74.	2.7	3
114	Gasâ€forming poly(ethylene glycol)â€ <i>b</i> â€poly(Lâ€lactic acid) micelles. Polymers for Advanced Technologies, 2013, 24, 551-556.	1.6	2
115	An albumin nanocomplex-based endosomal pH-activatable on/off probe system. Colloids and Surfaces B: Biointerfaces, 2016, 144, 327-334.	2.5	2
116	HM10660A, a long-acting hIFN-α-2b, is a potent candidate for the treatment of hepatitis C through an enhanced biological half-life. International Journal of Pharmaceutics, 2017, 534, 89-96.	2.6	1
117	Correction: Synergistic photodynamic therapeutic effect of indole-3-acetic acid using a pH sensitive nano-carrier based on poly(aspartic acid-graft-imidazole)-poly(ethylene glycol). Journal of Materials Chemistry B, 2018, 6, 337-337.	2.9	0