
Jia-Xiong Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4492513/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Red/Nearâ€Infrared Thermally Activated Delayed Fluorescence OLEDs with Near 100 % Internal Quantum Efficiency. Angewandte Chemie - International Edition, 2019, 58, 14660-14665.	7.2	247
2	Bipolar Phenanthroimidazole Derivatives Containing Bulky Polyaromatic Hydrocarbons for Nondoped Blue Electroluminescence Devices with High Efficiency and Low Efficiency Roll-Off. Chemistry of Materials, 2013, 25, 4957-4965.	3.2	214
3	Rational Design of Conjugated Small Molecules for Superior Photothermal Theranostics in the NIRâ€I Biowindow. Advanced Materials, 2020, 32, e2001146.	11.1	204
4	Biodegradable π-Conjugated Oligomer Nanoparticles with High Photothermal Conversion Efficiency for Cancer Theranostics. ACS Nano, 2019, 13, 12901-12911.	7.3	191
5	Red Organic Lightâ€Emitting Diode with External Quantum Efficiency beyond 20% Based on a Novel Thermally Activated Delayed Fluorescence Emitter. Advanced Science, 2018, 5, 1800436.	5.6	186
6	Novel Strategy to Develop Exciplex Emitters for Highâ€Performance OLEDs by Employing Thermally Activated Delayed Fluorescence Materials. Advanced Functional Materials, 2016, 26, 2002-2008.	7.8	181
7	Managing Locally Excited and Chargeâ€Transfer Triplet States to Facilitate Upâ€Conversion in Red TADF Emitters That Are Available for Both Vacuum―and Solutionâ€Processes. Angewandte Chemie - International Edition, 2021, 60, 2478-2484.	7.2	116
8	Stable Organic Photosensitizer Nanoparticles with Absorption Peak beyond 800 Nanometers and High Reactive Oxygen Species Yield for Multimodality Phototheranostics. ACS Nano, 2020, 14, 9917-9928.	7.3	101
9	The Nanoassembly of an Intrinsically Cytotoxic Nearâ€Infrared Dye for Multifunctionally Synergistic Theranostics. Small, 2019, 15, e1903121.	5.2	76
10	Coumarin-Based Thermally Activated Delayed Fluorescence Emitters with High External Quantum Efficiency and Low Efficiency Roll-off in the Devices. ACS Applied Materials & Interfaces, 2017, 9, 8848-8854.	4.0	67
11	Deepâ€Red/Nearâ€Infrared Electroluminescence from Singleâ€Component Chargeâ€Transfer Complex via Thermally Activated Delayed Fluorescence Channel. Advanced Functional Materials, 2019, 29, 1903112.	7.8	59
12	Bipolar Blue Host Emitter with Unity Quantum Yield Allows Full Exciton Radiation in Single-Emissive-Layer Hybrid White Organic Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2019, 11, 11691-11698.	4.0	59
13	Efficient Orange-Red Thermally Activated Delayed Fluorescence Emitters Feasible for Both Thermal Evaporation and Solution Process. ACS Applied Materials & Interfaces, 2019, 11, 29086-29093.	4.0	57
14	Manipulating exciton dynamics of thermally activated delayed fluorescence materials for tuning two-photon nanotheranostics. Chemical Science, 2020, 11, 888-895.	3.7	54
15	Hydrogen bond-modulated molecular packing and its applications in high-performance non-doped organic electroluminescence. Materials Horizons, 2020, 7, 2734-2740.	6.4	51
16	Managing Intersegmental Chargeâ€Transfer and Multiple Resonance Alignments of D ₃ â€A Typed TADF Emitters for Red OLEDs with Improved Efficiency and Color Purity. Advanced Optical Materials, 2022, 10, 2101789.	3.6	41
17	Red/Nearâ€Infrared Thermally Activated Delayed Fluorescence OLEDs with Near 100 % Internal Quantum Efficiency. Angewandte Chemie, 2019, 131, 14802-14807.	1.6	40
18	Amplifying Free Radical Generation of AIE Photosensitizer with Small Singlet–Triplet Splitting for Hypoxia-Overcoming Photodynamic Therapy. ACS Applied Materials & Interfaces, 2022, 14, 5112-5121.	4.0	40

JIA-XIONG CHEN

#	Article	IF	CITATIONS
19	A novel D–ï€â€"A blue fluorophore based on [1,2,4]triazolo[1,5- <i>a</i>]pyridine as an electron acceptor and its application in organic light-emitting diodes. Materials Chemistry Frontiers, 2019, 3, 1071-1079.	3.2	37
20	Characterizing the Conformational Distribution in an Amorphous Film of an Organic Emitter and Its Application in a "Selfâ€Đoping―Organic Lightâ€Emitting Diode. Angewandte Chemie - International Edition, 2021, 60, 25878-25883.	7.2	35
21	Thermally Activated Delayed Fluorescence Warm White Organic Light Emitting Devices with External Quantum Efficiencies Over 30%. Advanced Functional Materials, 2021, 31, 2101647.	7.8	34
22	Isomeric thermally activated delayed fluorescence emitters based on indolo[2,3- <i>b</i>]acridine electron-donor: a compromising optimization for efficient orange–red organic light-emitting diodes. Journal of Materials Chemistry C, 2019, 7, 2898-2904.	2.7	28
23	Achieving high singlet-oxygen generation by applying the heavy-atom effect to thermally activated delayed fluorescent materials. Chemical Communications, 2021, 57, 4902-4905.	2.2	27
24	Optimization on Molecular Restriction for Highly Efficient Thermally Activated Delayed Fluorescence Emitters. Advanced Optical Materials, 2018, 6, 1800935.	3.6	26
25	Managing Locally Excited and Chargeâ€Transfer Triplet States to Facilitate Upâ€Conversion in Red TADF Emitters That Are Available for Both Vacuum―and Solutionâ€Processes. Angewandte Chemie, 2021, 133, 2508-2514.	1.6	24
26	The impact of light irradiation timing on the efficacy of nanoformula-based photo/chemo combination therapy. Journal of Materials Chemistry B, 2018, 6, 3692-3702.	2.9	23
27	Singleâ€Photomolecular Nanotheranostics for Synergetic Nearâ€Infrared Fluorescence and Photoacoustic Imagingâ€Guided Highly Effective Photothermal Ablation. Small, 2020, 16, e2002672.	5.2	23
28	The locally twisted thiophene bridged phenanthroimidazole derivatives as dual-functional emitters for efficient non-doped electroluminescent devices. Organic Electronics, 2015, 18, 61-69.	1.4	21
29	Optimizing Intermolecular Interactions and Energy Level Alignments of Red TADF Emitters for Highâ€Performance Organic Lightâ€Emitting Diodes. Small, 2022, 18, e2201548.	5.2	20
30	Rational molecular design of bipolar phenanthroimidazole derivatives to realize highly efficient non-doped deep blue electroluminescence with CIEy Ë, 0.06 and EQE approaching 6%. Dyes and Pigments, 2020, 173, 107982.	2.0	16
31	Origin of thermally activated delayed fluorescence in a donor–acceptor type emitter with an optimized nearly planar geometry. Journal of Materials Chemistry C, 2020, 8, 13263-13269.	2.7	16
32	Highâ€Performance Nondoped Organic Lightâ€Emitting Diode Based on a Thermally Activated Delayed Fluorescence Emitter with 1D Intermolecular Hydrogen Bonding Interactions. Advanced Optical Materials, 2021, 9, 2100461.	3.6	16
33	Dibenzofuran/dibenzothiophene as the secondary electron-donors for highly efficient blue thermally activated delayed fluorescence emitters. Journal of Materials Chemistry C, 2019, 7, 4475-4483.	2.7	15
34	Highly efficient thermally activated delayed fluorescence emitters based on novel Indolo[2,3-b]acridine electron-donor. Organic Electronics, 2018, 57, 327-334.	1.4	13
35	Nonconjugated Triptycene-Spaced Donor–Acceptor-Type Emitters Showing Thermally Activated Delayed Fluorescence via Both Intra- and Intermolecular Charge-Transfer Transitions. ACS Applied Materials & Interfaces, 2021, 13, 25193-25201.	4.0	13
36	A facile strategy for enhancing reverse intersystem crossing of red thermally activated delayed fluorescence emitters. Chemical Engineering Journal, 2022, 433, 134423.	6.6	13

#	Article	IF	CITATIONS
37	Charge-transfer transition regulation of thermally activated delayed fluorescence emitters by changing the valence of sulfur atoms. Journal of Materials Chemistry C, 2020, 8, 17457-17463.	2.7	11

Chargeâ€Transfer Complexes: Deepâ€Red/Nearâ€Infrared Electroluminescence from Singleâ€Component Chargeâ€Transfer Complex via Thermally Activated Delayed Fluorescence Channel (Adv. Funct. Mater.) Tj ETQq0 0 0.8gBT /Oværlock 10 1 38

39	Controlling the conjugation extension inside acceptors for enhancing reverse intersystem crossing of red thermally activated delayed fluorescence emitters. Chemical Engineering Journal, 2022, 440, 135775.	6.6	9
40	Highly Efficient Thermally Activated Delayed Fluorescence Emitter Developed by Replacing Carbazole With 1,3,6,8-Tetramethyl-Carbazole. Frontiers in Chemistry, 2019, 7, 17.	1.8	8
41	Characterizing the Conformational Distribution in an Amorphous Film of an Organic Emitter and Its Application in a "Selfâ€Doping―Organic Lightâ€Emitting Diode. Angewandte Chemie, 2021, 133, 26082-260) 8 76	8
42	Fine-tuning the emissions of highly efficient thermally activated delayed fluorescence emitters with different linking positions of electron-deficient substituent groups. Dyes and Pigments, 2017, 143, 62-70.	2.0	7
43	Using fullerene fragments as acceptors to construct thermally activated delayed fluorescence emitters for high-efficiency organic light-emitting diodes. Chemical Engineering Journal, 2022, 435, 134731.	6.6	7
44	Thermally activated delayed fluorescence materials for nondoped organic lightâ€emitting diodes with nearly 100% exciton harvest. SmartMat, 2023, 4, .	6.4	7
45	Research Progress of Red Thermally Activated Delayed Fluorescent Materials Based on Quinoxaline. Acta Chimica Sinica, 2022, 80, 359.	0.5	5
46	Novel star-shaped yellow thermally activated delayed fluorescence emitter realizing over 10% external quantum efficiency at high luminance of 30000â€⁻cdâ€⁻mâ^'2 in OLED. Organic Electronics, 2018, 62, 220-226.	1.4	4
47	Improving performance of thermally activated delayed fluorescence emitter by extending its LUMO distribution. Science China Materials, 2019, 62, 719-728.	3.5	4
48	High-performance red and white organic light-emitting diodes based on a novel red thermally activated delayed fluorescence emitter in an exciplex matrix. Materials Today Energy, 2021, 21, 100818.	2.5	2
49	Titelbild: Red/Nearâ€Infrared Thermally Activated Delayed Fluorescence OLEDs with Near 100 % Internal Quantum Efficiency (Angew. Chem. 41/2019). Angewandte Chemie, 2019, 131, 14529-14529.	1.6	0