List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/449217/publications.pdf Version: 2024-02-01

LALIDA DE CADA

#	Article	IF	CITATIONS
1	Impact of Mediterranean diet on metabolic and inflammatory status of patients with polyvascular atherosclerotic disease. Nutrition, Metabolism and Cardiovascular Diseases, 2022, 32, 117-124.	1.1	6
2	The application of solar drying process for the valorisation of papaya fruit. European Food Research and Technology, 2022, 248, 857.	1.6	3
3	Microbiological Risk Assessment of Ready-to-Eat Leafy Green Salads via a Novel Electrochemical Sensor. Chemosensors, 2022, 10, 134.	1.8	5
4	A Multifactorial Regulation of Glutathione Metabolism behind Salt Tolerance in Rice. Antioxidants, 2022, 11, 1114.	2.2	9
5	Distribution of bioactives in entire mill chain from the drupe to the oil and wastes. Natural Product Research, 2021, 35, 4182-4187.	1.0	12
6	Antioxidant and Antiglycation Effects of Polyphenol Compounds Extracted from Hazelnut Skin on Advanced Glycation End-Products (AGEs) Formation. Antioxidants, 2021, 10, 424.	2.2	48
7	Dispersive liquid-liquid microextraction using a low transition temperature mixture and liquid chromatography-mass spectrometry analysis of pesticides in urine samples. Journal of Chromatography A, 2021, 1642, 462036.	1.8	29
8	Determinants of root system architecture for futureâ€ready, stressâ€resilient crops. Physiologia Plantarum, 2021, 172, 2090-2097.	2.6	25
9	Choline Chloride–Lactic Acid-Based NADES As an Extraction Medium in a Response Surface Methodology-Optimized Method for the Extraction of Phenolic Compounds from Hazelnut Skin. Molecules, 2021, 26, 2652.	1.7	39
10	Comparison between In Vitro Chemical and Ex Vivo Biological Assays to Evaluate Antioxidant Capacity of Botanical Extracts. Antioxidants, 2021, 10, 1136.	2.2	11
11	Plant Wearable Sensors Based on FBG Technology for Growth and Microclimate Monitoring. Sensors, 2021, 21, 6327.	2.1	23
12	Food security and nutritional status of children in foster care: new horizons in the protection of a fragile population. Minerva Pediatrica, 2021, 72, 508-513.	2.6	1
13	Characterization of the polyphenolic fraction of pomegranate samples by comprehensive two-dimensional liquid chromatography coupled to mass spectrometry detection. Natural Product Research, 2020, 34, 39-45.	1.0	34
14	African baobab (Adansonia digitata) fruit as promising source of procyanidins. European Food Research and Technology, 2020, 246, 297-306.	1.6	7
15	Overexpression of ZePrx in Nicotiana tabacum Affects Lignin Biosynthesis Without Altering Redox Homeostasis. Frontiers in Plant Science, 2020, 11, 900.	1.7	6
16	Choline-chloride and betaine-based deep eutectic solvents for green extraction of nutraceutical compounds from spent coffee ground. Journal of Pharmaceutical and Biomedical Analysis, 2020, 189, 113421.	1.4	40
17	Application of deep eutectic solvents for the extraction of phenolic compounds from extraâ€virgin olive oil. Electrophoresis, 2020, 41, 1752-1759.	1.3	32
18	Determination of the Phenol and Tocopherol Content in Italian High-Quality Extra-Virgin Olive Oils by Using LC-MS and Multivariate Data Analysis. Food Analytical Methods, 2020, 13, 1027-1041.	1.3	28

#	Article	IF	CITATIONS
19	Have lichenized fungi delivered promising anticancer small molecules?. Phytochemistry Reviews, 2019, 18, 1-36.	3.1	19
20	Redox Balance-DDR-miRNA Triangle: Relevance in Genome Stability and Stress Responses in Plants. Frontiers in Plant Science, 2019, 10, 989.	1.7	27
21	Directed Evolution of Plant Processes: Towards aÂGreen (r)Evolution?. Trends in Plant Science, 2019, 24, 999-1007.	4.3	33
22	Analysis of Redox Relationships in the Plant Cell Cycle: Determination of Ascorbate, Glutathione, and Poly(ADPribose)polymerase (PARP) in Plant Cell Cultures. Methods in Molecular Biology, 2019, 1990, 165-181.	0.4	7
23	Genetic buffering of cyclic <scp>AMP</scp> in <i>Arabidopsis thaliana</i> compromises the plant immune response triggered by an avirulent strain of <i>Pseudomonas syringae</i> pv. <i>tomato</i> . Plant Journal, 2019, 98, 590-606.	2.8	32
24	Blood orange (Citrus sinensis) as a rich source of nutraceuticals: investigation of bioactive compounds in different parts of the fruit by HPLC-PDA/MS. Natural Product Research, 2019, 35, 1-5.	1.0	18
25	Effects of ionizing radiation on bio-active plant extracts useful for preventing oxidative damages. Natural Product Research, 2019, 33, 1106-1114.	1.0	17
26	Effect of solvent on the extraction of phenolic compounds and antioxidant capacity of hazelnut kernel. Electrophoresis, 2018, 39, 1683-1691.	1.3	12
27	Use of an Online Extraction Technique Coupled to Liquid Chromatography for Determination of Caffeine in Coffee, Tea, and Cocoa. Food Analytical Methods, 2018, 11, 2637-2644.	1.3	17
28	Analysis of phenolic compounds in different parts of pomegranate (Punica granatum) fruit by HPLC-PDA-ESI/MS and evaluation of their antioxidant activity: application to different Italian varieties. Analytical and Bioanalytical Chemistry, 2018, 410, 3507-3520.	1.9	111
29	Plant Cell Cultures as Model Systems to Study Programmed Cell Death. Methods in Molecular Biology, 2018, 1743, 173-186.	0.4	6
30	Programmed Cell Death in Plants: An Overview. Methods in Molecular Biology, 2018, 1743, 1-8.	0.4	92
31	ROS and redox balance as multifaceted players of cross-tolerance: epigenetic and retrograde control of gene expression. Journal of Experimental Botany, 2018, 69, 3373-3391.	2.4	83
32	Differential Pb tolerance in metallicolous and non-metallicolous Zygophyllum fabago populations involves the strengthening of the antioxidative pathways. Environmental and Experimental Botany, 2018, 150, 141-151.	2.0	31
33	Field application of the Micro Biological Survey method for the assessment of the microbiological safety of different water sources in Tanzania. Journal of Public Health in Africa, 2018, 9, 905.	0.2	4
34	Extraction, Analysis, and Antioxidant Activity Evaluation of Phenolic Compounds in Different Italian Extra-Virgin Olive Oils. Molecules, 2018, 23, 3249.	1.7	25
35	H2O2 Signature and Innate Antioxidative Profile Make the Difference Between Sensitivity and Tolerance to Salt in Rice Cells. Frontiers in Plant Science, 2018, 9, 1549.	1.7	13
36	Two different Xylella fastidiosa strains circulating in Italy: phylogenetic and evolutionary analyses. Journal of Plant Interactions, 2018, 13, 428-432.	1.0	6

#	Article	IF	CITATIONS
37	Environmental conditions influence the biochemical properties of the fruiting bodies of Tuber magnatum Pico. Scientific Reports, 2018, 8, 7243.	1.6	27
38	Ying and Yang interplay between reactive oxygen and reactive nitrogen species controls cell functions. Plant, Cell and Environment, 2017, 40, 459-461.	2.8	13
39	Glutathione as a Key Player in Plant Abiotic Stress Responses and Tolerance. , 2017, , 127-145.		6
40	Effect of Inulin on Proteome Changes Induced by Pathogenic Lipopolysaccharide in Human Colon. PLoS ONE, 2017, 12, e0169481.	1.1	15
41	ROS Production and Scavenging under Anoxia and Re-Oxygenation in Arabidopsis Cells: A Balance between Redox Signaling and Impairment. Frontiers in Plant Science, 2016, 7, 1803.	1.7	53
42	Prototypical versus contemporary Mediterranean Diet. Clinical Nutrition ESPEN, 2016, 15, 44-48.	0.5	9
43	GH32 family activity: a topological approach through protein contact networks. Plant Molecular Biology, 2016, 92, 401-410.	2.0	15
44	Constitutive cyclic GMP accumulation in Arabidopsis thaliana compromises systemic acquired resistance induced by an avirulent pathogen by modulating local signals. Scientific Reports, 2016, 6, 36423.	1.6	27
45	Tu1851 Protective Effect of Inulin on LPS-Induced Intestinal Smooth Muscle Impairment: A Proteomic Approach. Gastroenterology, 2016, 150, S960.	0.6	0
46	Nitric Oxide and Reactive Oxygen Species in PCD Signaling. Advances in Botanical Research, 2016, , 165-192.	0.5	28
47	Role of redox homeostasis in thermo-tolerance under a climate change scenario: Fig. 1 Annals of Botany, 2015, 116, 487-496.	1.4	62
48	Involvement of DNA methylation in the control of cell growth during heat stress in tobacco BY-2 cells. Protoplasma, 2015, 252, 1451-1459.	1.0	29
49	Fructan biosynthesis and degradation as part of plant metabolism controlling sugar fluxes during durum wheat kernel maturation. Frontiers in Plant Science, 2015, 6, 89.	1.7	39
50	Over-expression of Trx <i>o</i> 1 increases the viability of tobacco BY-2 cells under H ₂ O ₂ treatment. Annals of Botany, 2015, 116, 571-582.	1.4	28
51	Su1840 Protective Effect of Inulin on LPS-Induced Oxidative Stress of Human Colonic Mucosa. Gastroenterology, 2015, 148, S-531.	0.6	1
52	Low concentrations of the toxin ophiobolin A lead to an arrest of the cell cycle and alter the intracellular partitioning of glutathione between the nuclei and cytoplasm. Journal of Experimental Botany, 2015, 66, 2991-3000.	2.4	22
53	Effects of temperature increase, through spring sowing, on antioxidant power and health-beneficial substances of old and new wheat varieties. Journal of Cereal Science, 2015, 61, 111-118.	1.8	12
54	Changes in antioxidants are critical in determining cell responses to short―and longâ€ŧerm heat stress. Physiologia Plantarum, 2015, 153, 68-78.	2.6	53

#	Article	IF	CITATIONS
55	Combined Dietary Recommendations, Desmopressin, and Behavioral Interventions May Be Effective First-Line Treatment in Resolution of Enuresis. Urology Journal, 2015, 12, 2228-32.	0.3	21
56	Antioxidant Activity of Inulin and Its Role in the Prevention of Human Colonic Muscle Cell Impairment Induced by Lipopolysaccharide Mucosal Exposure. PLoS ONE, 2014, 9, e98031.	1.1	66
57	Role of clinical tutors in volunteering work camps. Clinical Teacher, 2014, 11, 116-119.	0.4	1
58	Su1489 Antioxidant Activity of Inulin and Its Ability to Prevent Human Colonic Muscle Cell Impairment Induced by Lipopolysaccharide Mucosal Exposure. Gastroenterology, 2014, 146, S-482.	0.6	0
59	Fructan Metabolism in Developing Wheat (Triticum aestivum L.) Kernels. Plant and Cell Physiology, 2013, 54, 2047-2057.	1.5	49
60	S-Nitrosylation of Ascorbate Peroxidase Is Part of Programmed Cell Death Signaling in Tobacco Bright Yellow-2 Cells. Plant Physiology, 2013, 163, 1766-1775.	2.3	139
61	Strategies to increase vitamin C in plants: from plant defense perspective to food biofortification. Frontiers in Plant Science, 2013, 4, 152.	1.7	77
62	Biofortification: how can we exploit plant science and biotechnology to reduce micronutrient deficiencies?. Frontiers in Plant Science, 2013, 4, 429.	1.7	27
63	Ophiobolin A, a sesterterpenoid fungal phytotoxin, displays higher in vitro growth-inhibitory effects in mammalian than in plant cells and displays in vivo antitumor activity. International Journal of Oncology, 2013, 43, 575-585.	1.4	33
64	The soluble proteome of tobacco Bright Yellow-2 cells undergoing H2O2-induced programmed cell death. Journal of Experimental Botany, 2012, 63, 3137-3155.	2.4	15
65	Resveratrol Biosynthesis: Plant Metabolic Engineering for Nutritional Improvement of Food. Plant Foods for Human Nutrition, 2012, 67, 191-199.	1.4	74
66	Redox regulation in plant programmed cell death. Plant, Cell and Environment, 2012, 35, 234-244.	2.8	196
67	Galactoneâ€Î³â€lactoneâ€dependent ascorbate biosynthesis alters wheat kernel maturation. Plant Biology, 2012, 14, 652-658.	1.8	31
68	Disease prevention by natural antioxidants and prebiotics acting as ROS scavengers in the gastrointestinal tract. Trends in Food Science and Technology, 2011, 22, 689-697.	7.8	106
69	Systems biology reveals biology of systems. Complexity, 2011, 16, 10-16.	0.9	8
70	Redox homeostasis in plants. The challenge of living with endogenous oxygen production. Respiratory Physiology and Neurobiology, 2010, 173, S13-S19.	0.7	98
71	Tocopherol production in plant cell cultures. Molecular Nutrition and Food Research, 2010, 54, 726-730.	1.5	42
72	Exploring the soluble proteome of TBY-2 cells at the switch towards different cell fates in response to heat shocks. Plant, Cell and Environment, 2010, 33, 1161-75.	2.8	21

LAURA DE GARA

#	Article	IF	CITATIONS
73	Cultivation of <i>Arabidopsis</i> cell cultures in a stirred bioreactor at variable oxygen levels: Influence on tocopherol production. Plant Biosystems, 2010, 144, 721-724.	0.8	9
74	Response to UV-C radiation in topo I-deficient carrot cells with low ascorbate levels. Journal of Experimental Botany, 2010, 61, 575-585.	2.4	33
75	Pyridine Nucleotide Cycling and Control of Intracellular Redox State in Relation to Poly (ADP-Ribose) Polymerase Activity and Nuclear Localization of Glutathione during Exponential Growth of Arabidopsis Cells in Culture. Molecular Plant, 2009, 2, 442-456.	3.9	81
76	Effect of autochthonous lactic acid bacteria starters on health-promoting and sensory properties of tomato juices. International Journal of Food Microbiology, 2009, 128, 473-483.	2.1	157
77	Yield and quality of early potato cultivars in relation to the use of glufosinateâ€ammonium as desiccant. Journal of the Science of Food and Agriculture, 2009, 89, 855-860.	1.7	8
78	The occurrence of riboflavin kinase and FAD synthetase ensures FAD synthesis in tobacco mitochondria and maintenance of cellular redox status. FEBS Journal, 2009, 276, 219-231.	2.2	48
79	Antioxidant and antiâ€inflammatory properties of tomato fruits synthesizing different amounts of stilbenes. Plant Biotechnology Journal, 2009, 7, 422-429.	4.1	55
80	Tuber quality and nutritional components of "early―potato subjected to chemical haulm desiccation. Journal of Food Composition and Analysis, 2009, 22, 556-562.	1.9	37
81	Different involvement of the mitochondrial, plastidial and cytosolic ascorbate–glutathione redox enzymes in heat shock responses. Physiologia Plantarum, 2009, 135, 296-306.	2.6	57
82	Production of reactive species and modulation of antioxidant network in response to heat shock: a critical balance for cell fate. Plant, Cell and Environment, 2008, 31, 1606-1619.	2.8	125
83	Selection and use of autochthonous mixed starter for lactic acid fermentation of carrots, French beans or marrows. International Journal of Food Microbiology, 2008, 127, 220-228.	2.1	119
84	Increase in Ascorbate-Glutathione Metabolism as Local and Precocious Systemic Responses Induced by Cadmium in Durum Wheat Plants. Plant and Cell Physiology, 2008, 49, 362-374.	1.5	222
85	Variation in fructooligosaccharide contents during plant development and in different cultivars of durum wheat. Plant Biosystems, 2008, 142, 656-660.	0.8	17
86	Analysis of Redox Relationships in the Plant Cell Cycle: Determinations of Ascorbate, Glutathione and Poly (ADPribose) Polymerase (PARP) in Plant Cell Cultures. Methods in Molecular Biology, 2008, 476, 193-209.	0.4	14
87	Proteasome function is required for activation of programmed cell death in heat shocked tobacco Bright-Yellow 2 cells. FEBS Letters, 2007, 581, 917-922.	1.3	35
88	In the early phase of programmed cell death in Tobacco Bright Yellow 2 cells the mitochondrial adenine nucleotide translocator, adenylate kinase and nucleoside diphosphate kinase are impaired in a reactive oxygen species-dependent manner. Biochimica Et Biophysica Acta - Bioenergetics, 2007, 1767, 66-78	0.5	29
89	Hydrogen peroxide, nitric oxide and cytosolic ascorbate peroxidase at the crossroad between defence and cell death. Plant Journal, 2006, 48, 784-795.	2.8	197
90	Effects ofÂstorage temperature onÂviability, germination andÂantioxidant metabolism inÂGinkgoÂbiloba L. seeds. Plant Physiology and Biochemistry, 2006, 44, 359-368.	2.8	37

#	Article	IF	CITATIONS
91	Two distinct cell sources of H2O2 in the lignifying Zinnia elegans cell culture system. Protoplasma, 2006, 227, 175-183.	1.0	28
92	Functional, antioxidant and rheological properties of meal from immature durum wheat. Journal of Cereal Science, 2006, 43, 216-222.	1.8	34
93	Chemical characterization and biological effects of immature durum wheat in rats. Journal of Cereal Science, 2006, 43, 129-136.	1.8	20
94	Reduced expression of top1Â gene induces programmed cell death and alters ascorbate metabolism in Daucus carota cultured cells. Journal of Experimental Botany, 2006, 57, 1667-1676.	2.4	16
95	Production of Reactive Oxygen Species, Alteration of Cytosolic Ascorbate Peroxidase, and Impairment of Mitochondrial Metabolism Are Early Events in Heat Shock-Induced Programmed Cell Death in Tobacco Bright-Yellow 2 Cells. Plant Physiology, 2004, 134, 1100-1112.	2.3	361
96	Ectopic Expression of Maize Polyamine Oxidase and Pea Copper Amine Oxidase in the Cell Wall of Tobacco Plants. Plant Physiology, 2004, 134, 1414-1426.	2.3	108
97	Changes in the ascorbate metabolism of apoplastic and symplastic spaces are associated with cell differentiation. Journal of Experimental Botany, 2004, 55, 2559-2569.	2.4	140
98	Antioxidant metabolite profiles in tomato fruit constitutively expressing the grapevine stilbene synthase gene. Plant Biotechnology Journal, 2004, 3, 57-69.	4.1	115
99	Class III peroxidases and ascorbate metabolism in plants. Phytochemistry Reviews, 2004, 3, 195-205.	3.1	91
100	Influence of an increased NaCl concentration on yield and quality of cherry tomato grown in posidonia(Posidonia oceanica(L) Delile). Journal of the Science of Food and Agriculture, 2004, 84, 1885-1890.	1.7	45
101	Comparative effects of various nitric oxide donors on ferritin regulation, programmed cell death, and cell redox state in plant cells. Journal of Plant Physiology, 2004, 161, 777-783.	1.6	107
102	Redox regulation and storage processes during maturation in kernels of Triticum durum. Journal of Experimental Botany, 2003, 54, 249-258.	2.4	165
103	The antioxidant systems vis-Ã-vis reactive oxygen species during plant–pathogen interaction. Plant Physiology and Biochemistry, 2003, 41, 863-870.	2.8	345
104	Exopolysaccharides Produced by Plant Pathogenic Bacteria Affect Ascorbate Metabolism in Nicotiana tabacum. Plant and Cell Physiology, 2003, 44, 803-810.	1.5	34
105	Changes in the Antioxidant Systems as Part of the Signaling Pathway Responsible for the Programmed Cell Death Activated by Nitric Oxide and Reactive Oxygen Species in Tobacco Bright-Yellow 2 Cells. Plant Physiology, 2002, 130, 698-708.	2.3	251
106	Ascorbate and glutathione: guardians of the cell cycle, partners in crime?. Plant Physiology and Biochemistry, 2002, 40, 537-548.	2.8	240
107	Ascorbate and glutathione metabolism in two sunflower cell lines of differing α-tocopherol biosynthetic capability. Plant Physiology and Biochemistry, 2002, 40, 509-513.	2.8	41
108	A comparative study of glutathione and ascorbate metabolism during germination of Pinus pinea L. seeds. Journal of Experimental Botany, 2001, 52, 1647-1654.	2.4	122

LAURA DE GARA

#	Article	IF	CITATIONS
109	Combined cadmium and ozone treatments affect photosynthesis and ascorbateâ€dependent defences in sunflower. New Phytologist, 2001, 151, 627-636.	3.5	86
110	Ascorbate-dependent hydrogen peroxide detoxification and ascorbate regeneration during germination of a highly productive maize hybrid: Evidence of an improved detoxification mechanism against reactive oxygen species. Physiologia Plantarum, 2000, 109, 7-13.	2.6	93
111	Enzymes of the ascorbate biosynthesis and ascorbate-glutathione cycle in cultured cells of tobacco Bright Yellow 2. Plant Physiology and Biochemistry, 2000, 38, 541-550.	2.8	91
112	Changes in onion root development induced by the inhibition of peptidyl-prolyl hydroxylase and influence of the ascorbate system on cell division and elongation. Planta, 1999, 209, 424-434.	1.6	115
113	Dehydroascorbate-reducing proteins in maize are induced by the ascorbate biosynthesis inhibitor lycorine. Plant Physiology and Biochemistry, 1998, 36, 433-440.	2.8	43
114	Correlation between changes in cell ascorbate and growth of Lupinus albus seedlings. Journal of Plant Physiology, 1997, 150, 302-308.	1.6	92
115	Lycorine: A powerful inhibitor of L-galactono-Î ³ -lactone dehydrogenase activity. Journal of Plant Physiology, 1997, 150, 362-364.	1.6	51
116	Distribution of cytosolic ascorbate peroxidase in Angiosperms. Giornale Botanico Italiano (Florence,) Tj ETQq0 0	O rgBT /Ov	erlock 10 Tf

117	Investigations of the coxll intron structure in the mitochondrial genes of angiosperms. Plant Science, 1994, 100, 179-186.	1.7	6
118	«In vivo» Inhibition of Galactono-γ-Lactone Conversion to Ascorbate by Lycorine. Journal of Plant Physiology, 1994, 144, 649-653.	1.6	37
119	Ascorbate Metabolism in Mature Pollen Grains of Dasypyrum villosum (L.) Borb. during Imbibition. Journal of Plant Physiology, 1993, 141, 405-409.	1.6	16
120	The structure of the cytochrome oxidase subunit II gene and its use as a new character in the construction of the phylogenetic tree of Angiospermae. Plant Science, 1992, 81, 75-82.	1.7	14
121	The biogenesis of galactone-Î ³ -lactone oxidase in Avena sativa embryos. Phytochemistry, 1992, 31, 755-756.	1.4	4
122	Ascorbic acid utilization by prolyl hydroxylase in vivo. Phytochemistry, 1991, 30, 1397-1399.	1.4	32
123	Ascorbic acid requirement for increased peroxidase activity during potato tuber slice aging. FEBS Letters, 1985, 187, 141-145.	1.3	19