Jiankai Liang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4492156/publications.pdf

Version: 2024-02-01

687363 677142 22 614 13 22 h-index citations g-index papers 23 23 23 732 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Identification and characterization of alphavirus M1 as a selective oncolytic virus targeting ZAP-defective human cancers. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E4504-12.	7.1	118
2	The Anti-Warburg Effect Elicited by the cAMP-PGC1 \hat{i} ± Pathway Drives Differentiation of Glioblastoma Cells into Astrocytes. Cell Reports, 2017, 18, 468-481.	6.4	85
3	Targeting VCP enhances anticancer activity of oncolytic virus M1 in hepatocellular carcinoma. Science Translational Medicine, 2017, 9 , .	12.4	55
4	DNA-PK inhibition synergizes with oncolytic virus M1 by inhibiting antiviral response and potentiating DNA damage. Nature Communications, 2018, 9, 4342.	12.8	38
5	Naturally Existing Oncolytic Virus M1 Is Nonpathogenic for the Nonhuman Primates After Multiple Rounds of Repeated Intravenous Injections. Human Gene Therapy, 2016, 27, 700-711.	2.7	37
6	Activation of Cyclic Adenosine Monophosphate Pathway Increases the Sensitivity of Cancer Cells to the Oncolytic Virus M1. Molecular Therapy, 2016, 24, 156-165.	8.2	35
7	Selective replication of oncolytic virus M1 results in a bystander killing effect that is potentiated by Smac mimetics. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 201701002.	7.1	33
8	Intravenous injection of the oncolytic virus M1 awakens antitumor T cells and overcomes resistance to checkpoint blockade. Cell Death and Disease, 2020, 11 , 1062 .	6.3	32
9	Necroptotic virotherapy of oncolytic alphavirus M1 cooperated with Doxorubicin displays promising therapeutic efficacy in TNBC. Oncogene, 2021, 40, 4783-4795.	5.9	26
10	A classical PKA inhibitor increases the oncolytic effect of M1 virus via activation of exchange protein directly activated by cAMP 1. Oncotarget, 2016, 7, 48443-48455.	1.8	23
11	Inhibition of the mevalonate pathway enhances cancer cell oncolysis mediated by M1 virus. Nature Communications, 2018, 9, 1524.	12.8	21
12	Systematic Characterization of the Biodistribution of the Oncolytic Virus M1. Human Gene Therapy, 2020, 31, 1203-1213.	2.7	17
13	Identification of the receptor of oncolytic virus M1 as a therapeutic predictor for multiple solid tumors. Signal Transduction and Targeted Therapy, 2022, 7, 100 .	17.1	17
14	Selective Antagonism of Bcl-xL Potentiates M1 Oncolysis by Enhancing Mitochondrial Apoptosis. Human Gene Therapy, 2018, 29, 950-961.	2.7	13
15	Negative regulation of miRâ€1275 by H3K27me3 is critical for glial induction of glioblastoma cells. Molecular Oncology, 2019, 13, 1589-1604.	4.6	13
16	Zinc-finger antiviral protein acts as a tumor suppressor in colorectal cancer. Oncogene, 2020, 39, 5995-6008.	5.9	12
17	Deficiency of the IRE1 \hat{i} ±-Autophagy Axis Enhances the Antitumor Effects of the Oncolytic Virus M1. Journal of Virology, 2018, 92, .	3.4	11
18	Real-Time Visualization and Quantification of Oncolytic M1 Virus <i>In Vitro</i> and <i>In Vivo</i> Human Gene Therapy, 2021, 32, 158-165.	2.7	11

#	Article	IF	CITATIONS
19	Tumors driven by <i>RAS</i> signaling harbor a natural vulnerability to oncolytic virus M1. Molecular Oncology, 2020, 14, 3153-3168.	4.6	7
20	Lonidamine potentiates the oncolytic efficiency of M1 virus independent of hexokinase 2 but via inhibition of antiviral immunity. Cancer Cell International, 2020, 20, 532.	4.1	5
21	Visualization of the Oncolytic Alphavirus M1 Life Cycle in Cancer Cells. Virologica Sinica, 2021, 36, 655-666.	3.0	4
22	Overcoming resistance to oncolytic virus M1 by targeting PI3K- \hat{l}^3 in tumor associated myeloid cells. Molecular Therapy, 2022, , .	8.2	1