Luca Di Felice

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4492097/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Iron and nickel doped alkaline-earth catalysts for biomass gasification with simultaneous tar reformation and CO2 capture. International Journal of Hydrogen Energy, 2011, 36, 5296-5310.	7.1	115
2	H2 production via ammonia decomposition in a catalytic membrane reactor. Fuel Processing Technology, 2021, 216, 106772.	7.2	66
3	Catalytic biomass gasification: Simultaneous hydrocarbons steam reforming and CO2 capture in a fluidised bed reactor. Chemical Engineering Journal, 2009, 154, 375-383.	12.7	61
4	Biomass Gasification with Catalytic Tar Reforming: A Model Study into Activity Enhancement of Calcium- and Magnesium-Oxide-Based Catalytic Materials by Incorporation of Iron. Energy & Fuels, 2010, 24, 4034-4045.	5.1	59
5	Au–Rh and Au–Pd nanocatalysts supported on rutile titania nanorods: structure and chemical stability. Physical Chemistry Chemical Physics, 2015, 17, 28112-28120.	2.8	42
6	Ultra-pure hydrogen production via ammonia decomposition in a catalytic membrane reactor. International Journal of Hydrogen Energy, 2022, 47, 21220-21230.	7.1	29
7	Development of Ni- and CaO-based mono- and bi-functional catalyst and sorbent materials for Sorption Enhanced Steam Methane Reforming: Performance over 200†cycles and attrition tests. Fuel Processing Technology, 2019, 195, 106160.	7.2	27
8	Methane partial oxidation over a LaCr 0.85 Ru 0.15 O 3 catalyst: Characterization, activity tests and kinetic modeling. Applied Catalysis A: General, 2014, 486, 239-249.	4.3	26
9	Development of Cost Effective and High Performance Composite for CO2 Capture in Ca-Cu Looping Process. Energy Procedia, 2017, 114, 211-219.	1.8	24
10	Decalin ring opening over NiWS/SiO 2 -Al 2 O 3 catalysts in the presence of H 2 S. Applied Catalysis A: General, 2016, 512, 43-51.	4.3	23
11	Combined sorbent and catalyst material for sorption enhanced reforming of methane under cyclic regeneration in presence of H2O and CO2. Fuel Processing Technology, 2019, 183, 35-47.	7.2	22
12	CO2 capture with calcined dolomite: the effect of sorbent particle size. Biomass Conversion and Biorefinery, 2011, 1, 149-161.	4.6	20
13	Chemical looping with oxygen uncoupling (CLOU) and chemical looping combustion (CLC) using copper-enriched oxygen carriers supported on fly ash. Fuel Processing Technology, 2017, 168, 123-130.	7.2	20
14	Effect of H2S on the mechanisms of naphthene ring opening and isomerization over Ir/NaY: A comparative study of decalin, perhydroindan and butylcyclohexane hydroconversions. Applied Catalysis A: General, 2018, 550, 274-283.	4.3	11
15	Performance and operating limits of a sorbent-catalyst system for sorption-enhanced reforming (SER) in a fluidized bed reactor. Chemical Engineering Science, 2019, 205, 94-105.	3.8	11
16	Understanding the Mechanisms of Decalin Hydroprocessing Using Comprehensive Two-Dimensional Chromatography. Industrial & Engineering Chemistry Research, 2016, 55, 12516-12523.	3.7	10
17	Fixed Bed Reactor Validation of a Mayenite Based Combined Calcium–Copper Material for Hydrogen Production through Ca–Cu Looping. Industrial & Engineering Chemistry Research, 2019, 58, 14664-14677.	3.7	7
18	The effect of Copper(II) oxide loading and precursor on the cyclic stability of combined mayenite based materials for calcium copper looping technology. International Journal of Hydrogen Energy, 2019, 44, 12604-12616.	7.1	6

#	Article	IF	CITATIONS
19	A calcium zirconate based combined material for calcium-copper chemical looping technology. International Journal of Greenhouse Gas Control, 2020, 95, 102953.	4.6	6
20	CO2 Capture by CaO-Based Sorbents and Sorption Enhanced Reaction Systems. , 2013, , 603-625.		1
21	Iron based catalyst for hydrocarbons catalytic reforming: A metal-support interaction study to interpret reactivity data. Studies in Surface Science and Catalysis, 2010, , 421-424.	1.5	0