Joao B Sousa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4492056/publications.pdf

Version: 2024-02-01

140	1,953 citations	304743 22 h-index	35 g-index
papers	Citations	II-IIIuex	g-maex
140 all docs	140 docs citations	140 times ranked	1913 citing authors

#	Article	IF	CITATIONS
1	Highly Ordered Hexagonal Arrays of TiO2 Nanotubes. Microscopy and Microanalysis, 2015, 21, 5-6.	0.4	1
2	Electrode band structure effects in thin MgO magnetic tunnel junctions. Applied Physics Letters, 2012, 100, .	3.3	8
3	Magnetic Behavior of High Density Arrays of Co Bars with Strong Magnetostatic Coupling. Journal of Nanoscience and Nanotechnology, 2012, 12, 7510-7515.	0.9	3
4	Exchange biased CoFeB-MgO tunnel junctions at the onset of perpendicular anisotropy with in-plane/out-of-plane sensing capabilities. Journal of Applied Physics, 2012, 111, .	2.5	15
5	Tailoring the physical properties of thin nanohole arrays grown on flat anodic aluminum oxide templates. Nanotechnology, 2012, 23, 425701.	2.6	23
6	Versatile, high sensitivity, and automatized angular dependent vectorial Kerr magnetometer for the analysis of nanostructured materials. Review of Scientific Instruments, 2011, 82, 043902.	1.3	26
7	Nanoscale Topography: A Tool to Enhance Pore Order and Pore Size Distribution in Anodic Aluminum Oxide. Journal of Physical Chemistry C, 2011, 115, 8567-8572.	3.1	48
8	Insights into the role of magnetoelastic anisotropy in the magnetization reorientation of magnetic nanowires. Physical Review B, 2011, 84, .	3.2	21
9	Unveiling the (De)coupling of magnetostructural transition nature in magnetocaloric R5Si2Ge2 (R = Tb,) ?	Ţj.ĔŢŎd1	1 ₂₀ .784314
10	Magnetization processes in rectangular versus rhombic planar superlattices of magnetic bars. Physical Review B, 2011, 84, .	3.2	3
11	Electron scattering processes in Ho5(SixGe1 \hat{a}^{\prime} x)4compounds: Electrical resistivity studies. Physical Review B, 2011, 83, .	3.2	9
12	Resonant Tunneling through Electronic Trapping States in Thin MgO Magnetic Junctions. Physical Review Letters, 2011, 106, 196601.	7.8	45
13	Understanding the role played by Fe on the tuning of magnetocaloric effect in Tb5Si2Ge2. Applied Physics Letters, $2011, 98, .$	3.3	18
14	Influence of Micro-Channel Shape and Magnetic Material on the Magneto-Refrigeration Process of Integrated Circuits. Journal of Nanoscience and Nanotechnology, 2010, 10, 2590-2593.	0.9	2
15	Influence of Pinholes on MgO-Tunnel Junction Barrier Parameters Obtained from Current–Voltage Characteristics. Journal of Nanoscience and Nanotechnology, 2010, 10, 2731-2734.	0.9	6
16	Study of Nanostructured Array of Antidots Using Pulsed Magnetic Fields. Journal of Low Temperature Physics, 2010, 159, 245-248.	1.4	12
17	Delocalized versus localized magnetization reversal in template-grown Ni and nanowires. Journal of Magnetism and Magnetic Materials, 2010, 322, 1319-1322.	2.3	17
18	Magnetic properties of amorphous Co0.74Si0.26â•Si multilayers with different numbers of periods. Low Temperature Physics, 2010, 36, 821-825.	0.6	0

#	Article	IF	Citations
19	Evidence of spin-polarized direct elastic tunneling and onset of superparamagnetism in MgO magnetic tunnel junctions. Physical Review B, $2010,81,.$	3.2	17
20	Probing atomic rearrangement events in resistive switching nanostructures. Applied Physics Letters, 2010, 96, 043505.	3.3	8
21	Ferromagnetic proximity effect in <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>a</mml:mi><mml:msub><mml:mrow><mml:mtext>-Co</mml:mtext> Role of magnetic disorder and interface transparency. Physical Review B, 2010, 82, .</mml:mrow></mml:msub></mml:mrow></mml:math>	mn ฆ่ะช าrow	/><¶nml:mi>×
22	Tunneling processes in thin MgO magnetic junctions. Applied Physics Letters, 2010, 96, 262506.	3.3	15
23	Griffiths-like phase of magnetocaloric <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>R</mml:mi><mml:mn>5</mml:mn></mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:ms< td=""><td>ubs.2mml:</td><td>:mrow><mm< td=""></mm<></td></mml:ms<></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:mrow></mml:math>	ub s. 2mml:	:mr o w> <mm< td=""></mm<>
24	Magnetic field strength and orientation effects on Co-Fe discontinuous multilayers close to percolation. Physical Review B, 2010, 82, .	3.2	7
25	A method to investigate the electron scattering characteristics of ultrathin metallic films by in situ electrical resistance measurements. Review of Scientific Instruments, 2009, 80, 073909.	1.3	3
26	Resistive switching in nanostructured thin films. Applied Physics Letters, 2009, 94, .	3.3	25
27	Ferro I phase and gadolinium. Physical Review B, 2009, 79, .	3.2	1
28	Magnetic and crystal structure of Ho5(SixGe1 \hat{a} °'x)4studied by neutron diffraction. Physical Review B, 2009, 80, .	3.2	13
29	Magnetic and transport properties of diluted granular multilayers. Journal of Applied Physics, 2009, 106, 113910.	2.5	5
30	The effect of pinhole formation/growth on the tunnel magnetoresistance of MgO-based magnetic tunnel junctions. Journal of Applied Physics, 2009, 106, 073707.	2.5	19
31	Control of hysteretic behavior in flux concentrators. Applied Physics Letters, 2009, 94, .	3.3	10
32	Electroforming, magnetic and resistive switching in MgO-based tunnel junctions. Journal Physics D: Applied Physics, 2009, 42, 105407.	2.8	35
33	Electron scattering characteristics of polycrystalline metal transition films by in-situ electrical resistance measurements. Journal of Magnetism and Magnetic Materials, 2009, 321, 2494-2498.	2.3	2
34	Soft Thin Films for Flux Concentrators. IEEE Transactions on Magnetics, 2009, 45, 168-171.	2.1	9
35	Influence of surface pre-treatment in the room temperature fabrication of nanoporous alumina. Physica Status Solidi C: Current Topics in Solid State Physics, 2008, 5, 3488-3491.	0.8	16
36	Magnetic characterization of MnPt/CoFe bilayers using the MOKE technique. Vacuum, 2008, 82, 1486-1488.	3.5	1

#	Article	IF	CITATIONS
37	Asymmetric electromigration-driven resistive switching in tunnel junctions. Journal of Non-Crystalline Solids, 2008, 354, 5272-5274.	3.1	3
38	Nanopore formation and growth in phosphoric acid Al anodization. Journal of Non-Crystalline Solids, 2008, 354, 5238-5240.	3.1	29
39	Transport properties near the magneto/structural transition of Tb5Si2Ge2. Journal of Non-Crystalline Solids, 2008, 354, 5298-5300.	3.1	8
40	Magnetic and transport studies of If-phase Fe50V50 alloys with different thermal history. Journal of Non-Crystalline Solids, 2008, 354, 5287-5289.	3.1	1
41	Structural characterization of MnNi and MnPt antiferromagnetic materials for spintronic applications. Journal of Non-Crystalline Solids, 2008, 354, 5275-5278.	3.1	2
42	Structural, magnetic and transport properties of ion beam deposited Co thin films. Journal of Non-Crystalline Solids, 2008, 354, 5279-5281.	3.1	15
43	Characterization of electrodeposited Ni and Ni80Fe20 nanowires. Journal of Non-Crystalline Solids, 2008, 354, 5241-5243.	3.1	17
44	Simulations of refrigeration on integrated circuits using micro-channels. Journal of Non-Crystalline Solids, 2008, 354, 5295-5297.	3.1	7
45	Preparation of compounds using RF-induction. Journal of Non-Crystalline Solids, 2008, 354, 5292-5294.	3.1	4
46	Training effect in specular spin valves. Physical Review B, 2008, 77, .	3.2	32
47	High Sensitivity Spin Valve Sensors With AF Coupled Flux Guides. IEEE Transactions on Magnetics, 2008, 44, 2472-2474.	2.1	4
48	Quantum effects in atomically perfect specular spin valve structures. Journal of Physics Condensed Matter, 2008, 20, 365205.	1.8	0
49	Linear field amplification for magnetoresistive sensors. Journal of Applied Physics, 2008, 103, 103914.	2.5	9
50	Pinholes in thin low resistance MgO-based magnetic tunnel junctions probed by temperature dependent transport measurements. Journal of Applied Physics, 2008, 103, 07A909.	2.5	12
51	Collective dynamics and ferromagnetic order in random planar arrays of magnetic granules. Journal of Applied Physics, 2008, 103, 07B723.	2.5	7
52	Structural and magnetic properties of mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow>Ho/mml:mtext> /mml:mrow> !" mn="">!"mn>!"mn>!"mn>!"mn>!"mn>!"mn>!"	5<)::::::::::::::::::::::::::::::::::::	n> 2 ‡mml:msı
53	Ruderman–Kittel–Kasuyama–Yoshida and Néel contributions to the interlayer coupling of MnIr-based spin valves: Influence of deposition rate, roughness and spacer thickness. Journal of Applied Physics, 2008, 103, .	2.5	13
54	Pinholes and temperature-dependent transport properties of MgO magnetic tunnel junctions. Physical Review B, 2008, 78, .	3.2	22

#	Article	IF	CITATIONS
55	Three-state memory combining resistive and magnetic switching using tunnel junctions. Journal Physics D: Applied Physics, 2007, 40, 5819-5823.	2.8	16
56	Influence of the domain structure of nano-oxide layers on the transport properties of specular spin valves. Journal of Applied Physics, 2007, 101, 09E502.	2.5	4
57	Distribution of blocking temperatures in nano-oxide layers of specular spin valves. Journal of Applied Physics, 2007, 101, 113901.	2.5	18
58	Nanogranular BaTiO3–CoFe2O4 thin films deposited by pulsed laser ablation. Journal of Applied Physics, 2007, 101, 09M101.	2.5	11
59	Competing spin-dependent conductance channels in underoxidized tunnel junctions. Applied Physics Letters, 2007, 90, 032501.	3.3	13
60	Effect of rare earth ion in the thermopower of compounds with and R=Gd and Tb. Journal of Magnetism and Magnetic Materials, 2007, 310, e580-e582.	2.3	5
61	Spin-dependent migration-conduction model for ultra-thin magnetic tunnel junctions. Journal of Magnetism and Magnetic Materials, 2007, 316, e957-e959.	2.3	0
62	Temperature dependence of transport properties and exchange field of NiMn based spin valves. Journal of Magnetism and Magnetic Materials, 2007, 316, e973-e976.	2.3	2
63	Transport Properties of Low Resistance Underoxidized Magnetic Tunnel Junctions. IEEE Transactions on Magnetics, 2007, 43, 2815-2817.	2.1	1
64	Interlayer Coupling and Magnetoresistance of MnIr-Based Spin Valves: Dependencies on Deposition Rate, Spacer Thickness, and Temperature. IEEE Transactions on Magnetics, 2007, 43, 3143-3145.	2.1	13
65	The role of dipolar interactions in magnetic nanoparticles: Ferromagnetic resonance in discontinuous magnetic multilayers. Journal of Applied Physics, 2007, 101, 103907.	2.5	27
66	Observation of a Griffiths-like Phase in the Magnetocaloric CompoundTb5Si2Ge2. Physical Review Letters, 2006, 96, 167201.	7.8	191
67	Nanoscopic processes of current-induced switching in thin tunnel junctions. IEEE Nanotechnology Magazine, 2006, 5, 142-148.	2.0	10
68	Ferromagnetic/mictomagnetic transitions in Fe rich Fe1â^'xAlx alloys: A magnetoresistivity study. Journal of Alloys and Compounds, 2006, 423, 84-86.	5.5	0
69	Transport and magnetic properties of the Er5Si4 compound. Journal of Alloys and Compounds, 2006, 423, 66-68.	5.5	6
70	Thermopower in specular spin valves. Journal of Alloys and Compounds, 2006, 423, 240-243.	5.5	2
71	Electromigration-driven resistance switching in non-magnetic tunnel junctions. Journal of Alloys and Compounds, 2006, 423, 181-183.	5.5	1
72	Spin-dependent two-level resistance fluctuations in underoxidized tunnel junctions. Journal of Applied Physics, 2006, 99, 08T301.	2.5	7

#	Article	IF	CITATIONS
73	Domain imaging, MOKE and magnetoresistance studies of CoFeB films for MRAM applications. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2006, 126, 180-186.	3.5	29
74	Evidence of surface anisotropy in magnetic nanoparticles. Journal of Magnetism and Magnetic Materials, 2006, 300, e331-e334.	2.3	12
75	Relaxation phenomena in current-induced switching in thin magnetic tunnel junctions. Journal of Magnetism and Magnetic Materials, 2005, 290-291, 1067-1070.	2.3	3
76	Exchange coupling of bilayers and synthetic antiferromagnets pinned to MnPt. European Physical Journal B, 2005, 45, 207-212.	1.5	15
77	Electromigration in thin tunnel junctions with ferromagnetic/nonmagnetic electrodes: Nanoconstrictions, local heating, and direct and wind forces. Physical Review B, 2005, 72, .	3.2	31
78	Thermopower and electrical resistivity behavior near the martensitic transition in Gd5(SixGe1â^'x)4 magnetocaloric compounds. Journal of Magnetism and Magnetic Materials, 2005, 290-291, 661-664.	2.3	11
79	Interlayer dipolar interactions in multilayered granular films. Journal of Applied Physics, 2005, 97, 10A723.	2.5	15
80	Blocking temperature in exchange coupled MnPtâ^•CoFe bilayers and synthetic antiferromagnets. Journal of Applied Physics, 2005, 97, 10K110.	2.5	21
81	Magnetic tuning of Fermi level for tunnel spintronics devices. Applied Physics Letters, 2005, 87, 062504.	3.3	0
82	Multi-step and anomalous reproducible behaviour of the electrical resistivity near the first-order magnetostructural transition of Gd5(Si0.1Ge0.9)4. Journal of Physics Condensed Matter, 2005, 17, 2461-2476.	1.8	13
83	Exchange bias of MnPt/CoFe films prepared by ion beam deposition. Journal of Applied Physics, 2004, 95, 6317-6321.	2.5	16
84	Structural and magnetic study of self- doped La1â^'xâ^'yCaxÃ^yMno3. Journal of Magnetism and Magnetic Materials, 2004, 272-276, 1753-1755.	2.3	6
85	Impact of the magnetism of nano-oxide layers on the GMR effect in specular spin valves. Journal of Magnetism and Magnetic Materials, 2004, 272-276, 1892-1894.	2.3	14
86	Unusual critical behavior of the electrical resistivity near the first-order magnetostructural transition of Gd5(Si0.1Ge0.9)4. Journal of Magnetism and Magnetic Materials, 2004, 272-276, 2370-2372.	2.3	2
87	Anomalous magnetoresistance near the spin reorientation transition of dilute Gd–Y single crystals. Journal of Magnetism and Magnetic Materials, 2004, 272-276, E491-E492.	2.3	2
88	Peculiar magnetic and electrical properties near structural percolation in metal-insulator granular layers. Journal of Applied Physics, 2004, 96, 3861-3864.	2.5	19
89	Structural imperfection, phase transitions, and the properties of magnetoresistive ceramic and films of La0.66Mn1.23V0.11(c)O2.842â^'V0.16(a). Low Temperature Physics, 2004, 30, 299-304.	0.6	7
90	Low-field magnetization study of CoFe–Al2O3 multilayers. Journal of Magnetism and Magnetic Materials, 2003, 266, 57-61.	2.3	14

#	Article	IF	Citations
91	Current-in-plane transport in granular single layers and multilayers of CoFe in Al2O3. Journal of Magnetism and Magnetic Materials, 2003, 266, 62-67.	2.3	6
92	Anomalous behavior of the electrical resistivity in the giant magnetocaloric compoundGd5(Si0.1Ge0.9)4. Physical Review B, 2003, 67, .	3.2	40
93	Cole-Cole Analysis of the Superspin Glass System Co 80 Fe 20 /Al 2 O 3. Phase Transitions, 2003, 76, 367-375.	1.3	27
94	Tricritical points in La-based ferromagnetic manganites. Journal of Applied Physics, 2003, 93, 7646-7648.	2.5	22
95	Anomalous magnetoresistance behavior of CoFe nano-oxide spin valves at low temperatures. Journal of Applied Physics, 2003, 93, 7690-7692.	2.5	19
96	Magnetic phase behavior for Gd-rich Gd–Y. Journal of Applied Physics, 2003, 93, 8349-8351.	2.5	5
97	Comparative study of magnetoresistance and magnetization in nano-oxide specular and nonspecular MnIr/CoFe/Cu/CoFe spin valves from 10 to 300 K. Journal of Applied Physics, 2002, 91, 5321-5324.	2.5	15
98	Superspin Glass Behavior of Interacting Ferromagnetic Nanoparticles in Discontinuous Magnetic Multilayers. Phase Transitions, 2002, 75, 73-79.	1.3	14
99	Magnetic relaxation phenomena in the superspin-glass system [Co80Fe20/Al2O3]10. Journal of Physics Condensed Matter, 2002, 14, 6729-6736.	1.8	18
100	Thermopower behavior in the Gd5(Si0.1Ge0.9)4 magnetocaloric compound from 4 to 300 K. Journal of Applied Physics, 2002, 91, 4457-4460.	2.5	18
101	Superspin-glass nature of discontinuousCo80Fe20/Al2O3multilayers. Physical Review B, 2002, 65, .	3.2	75
102	Magnetic states of discontinuous Co80Fe20–Al2O3 multilayers. Journal of Magnetism and Magnetic Materials, 2002, 240, 433-435.	2.3	11
103	Discontinuous transition effects in manganites: magnetization study in the paramagnetic phase. Journal of Magnetism and Magnetic Materials, 2002, 242-245, 655-658.	2.3	23
104	Local structure in CoFe/Al2O3 multilayers determined by nuclear magnetic resonance. Journal of Magnetism and Magnetic Materials, 2002, 242-245, 943-945.	2.3	4
105	Peculiar CIP transport in CoFe/Al2O3 granular layered films across a micro-gap. Journal of Magnetism and Magnetic Materials, 2002, 242-245, 485-488.	2.3	2
106	Magnetic states of granular layered CoFe-Al/sub 2/O/sub 3/ system. IEEE Transactions on Magnetics, 2001, 37, 2200-2203.	2.1	8
107	Complex magnetic phase behavior in Gd-rich Gd-Y single crystal alloys. IEEE Transactions on Magnetics, 2001, 37, 2166-2168.	2.1	5
108	Optical characterisation of anatase: a comparative study of the bulk crystal and the polycrystalline thin film. Thin Solid Films, 2001, 401, 216-224.	1.8	40

#	Article	IF	Citations
109	Hyperfine Fields at the Cd Site in La0.67Cd0.25MnO3 CMR Manganites. Hyperfine Interactions, 2001, 133, 89-94.	0.5	8
110	Exchange enhancement and thermal anneal in Mn76Ir24 bottom-pinned spin valves. Journal of Applied Physics, 2001, 89, 6904-6906.	2.5	46
111	Tunnel magnetoresistance and magnetic ordering in ion-beam sputtered Co80Fe20/Al2O3 discontinuous multilayers. Journal of Applied Physics, 2001, 90, 4044-4048.	2.5	78
112	Electron–gamma perturbed angular correlation studies on high-TC superconductors. , 2000, 129, 461-473.		0
113	Magnetic properties of coarse-grained and nanocrystalline Fe–Cr–Sn alloys. Journal of Alloys and Compounds, 2000, 308, 49-55.	5.5	11
114	Low temperature resistivity studies of Fe–Cr–Sn alloys in alpha and sigma phases. Journal of Alloys and Compounds, 2000, 297, 15-20.	5.5	5
115	Helimagnetism and field-induced phases in random Gd64Sc36single crystals. Journal of Physics Condensed Matter, 1999, 11, 7115-7124.	1.8	3
116	Giant magneto-resistive granular films grown by laser ablation. Journal of Materials Processing Technology, 1999, 92-93, 534-538.	6.3	6
117	GMR in high fluence ion implanted granular thin films. Journal of Magnetism and Magnetic Materials, 1999, 196-197, 13-17.	2.3	7
118	Influence of co-evaporation technique on the structural and magnetic properties of CoCu granular films. Journal of Magnetism and Magnetic Materials, 1999, 196-197, 29-30.	2.3	23
119	GMR in co-evaporated Coî—,Ag granular thin films. Journal of Magnetism and Magnetic Materials, 1999, 196-197, 40-42.	2.3	14
120	Influence of conduction electrons and dipolar interactions on the susceptibility of granular materials. Journal of Magnetism and Magnetic Materials, 1999, 196-197, 112-114.	2.3	7
121	Magnetic and transport properties of amorphous Gdâ€"V films. Journal of Magnetism and Magnetic Materials, 1999, 196-197, 251-252.	2.3	2
122	Deposition of LaCaMnO3 thin films using aerosol-assisted metalorganic chemical vapor deposition (MOCVD) substrate and annealing effects. Journal of Magnetism and Magnetic Materials, 1999, 196-197, 490-492.	2.3	1
123	Magnetoresistivity and magnetic phase diagram of Nd2Ni2Sn ternary stannide. Journal of Magnetism and Magnetic Materials, 1999, 196-197, 710-711.	2.3	3
124	Magnetic and transport properties of U2Pt2In single crystals. Journal of Magnetism and Magnetic Materials, 1999, 196-197, 885-887.	2.3	3
125	Transport properties of discontinuous Co/sub 80/Fe/sub 20//Al/sub 2/O/sub 3/ multilayers, prepared by ion beam sputtering. IEEE Transactions on Magnetics, 1999, 35, 2895-2897.	2.1	30
126	Magnetization density in. Journal of Physics Condensed Matter, 1998, 10, 4071-4079.	1.8	5

#	Article	IF	CITATIONS
127	The effect of substrate bias on the properties of NiO/NiFe and NiO/CoFe exchange biased spin-valve sensors. IEEE Transactions on Magnetics, 1998, 34, 3772-3777.	2.1	6
128	Design, fabrication, and wafer level testing of (NiFe/Cu)/sub xn/ dual stripe GMR sensors. IEEE Transactions on Magnetics, 1997, 33, 2905-2907.	2.1	10
129	A user-friendly PC program for evaluation of Mössbauer spectra. Measurement Science and Technology, 1997, 8, 941-946.	2.6	8
130	Anomalous electrical resistivity in metallic multilayer systems and interfacial structural changes. Journal of Magnetism and Magnetic Materials, 1996, 156, 357-358.	2.3	2
131	s—d Electron scattering as a sensitive probe to study Fe/Cr multilayer structural differences (MBE/sputtered samples). Journal of Magnetism and Magnetic Materials, 1996, 156, 399-401.	2.3	2
132	Temperature dependence of the electrical resistivity and magnetoresistance of Co/Au1 â^ Cu multilayers. Journal of Magnetism and Magnetic Materials, 1996, 157-158, 276-278.	2.3	1
133	Transport and magneto-transport properties of U2Ni2Sn. Journal of Magnetism and Magnetic Materials, 1996, 157-158, 698-699.	2.3	2
134	Phonon-assisted sd electron scattering in Fe/Cr multilayers. Journal of Magnetism and Magnetic Materials, 1996, 157-158, 730-732.	2.3	6
135	Unusual slow magnetic relaxation on a SmCo2/GdCo2 domain wall junction at low temperature. Journal of Magnetism and Magnetic Materials, 1996, 161, 133-138.	2.3	1
136	Bicrystalline magnetic lateral superlattices. Journal of Magnetism and Magnetic Materials, 1996, 163, 1-4.	2.3	6
137	Magnetoresistance and phase analysis in splat-cooled Feî—,Cu granular alloys. Solid State Communications, 1996, 100, 639-644.	1.9	12
138	Magnetothermopower in antiferromagnetically coupled Coâ€Re superlattices. Journal of Applied Physics, 1994, 75, 6551-6553.	2.5	1
139	Lowâ€temperature behavior of thermopower in rareâ€earth iron boridesR2Fe14B (R=Nd, Sm, Gd, Tb, Dy, Ho,) Tj	ETQq1	1 0.784314 rgB _
140	Anomalous behaviour of the electrical resistivity of Y2Fe14B. Journal of Physics Condensed Matter, 1991, 3, 4119-4123.	1.8	6