
Rafael A Auras

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4491977/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Morphology, Mechanical, and Water Barrier Properties of Carboxymethyl Rice Starch Films: Sodium Hydroxide Effect. Molecules, 2022, 27, 331.	1.7	7
2	Morphological, barrier, thermal, and rheological properties of high-pressure treated co-extruded polylactide films and the suitability for food packaging. Food Packaging and Shelf Life, 2022, 32, 100812.	3.3	10
3	Role of stereocomplex in advancing mass transport and thermomechanical properties of polylactide. Green Chemistry, 2022, 24, 3416-3432.	4.6	14
4	PLLAâ€ZIFâ€8 metal organic framework composites for potential use in food applications: Production, characterization and migration studies. Packaging Technology and Science, 2021, 34, 393-400.	1.3	3
5	Polylactide/graphene nanoplatelets composite films: Impact of highâ€pressure on topography, barrier, thermal, and mechanical properties. Polymer Composites, 2021, 42, 2898-2909.	2.3	15
6	Major Plastics in Packaging. , 2021, , 105-164.		0
7	Polymer Structure and Properties. , 2021, , 25-103.		0
8	Genome Annotation of Poly(lactic acid) Degrading Pseudomonas aeruginosa, Sphingobacterium sp. and Geobacillus sp International Journal of Molecular Sciences, 2021, 22, 7385.	1.8	5
9	Encapsulation of hexanal in bio-based cyclodextrin metal organic framework for extended release. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2021, 101, 121-130.	0.9	10
10	Morphological, barrier and thermo-mechanical properties of high-pressure treated polylactide graphene oxide reinforced composite films. Food Packaging and Shelf Life, 2021, 29, 100702.	3.3	16
11	Effects of the Three-Phase Crystallization Behavior on the Hydrolysis of Amorphous and Semicrystalline Poly(lactic acid)s. ACS Applied Polymer Materials, 2021, 3, 5920-5931.	2.0	17
12	In-situ changes of thermo-mechanical properties of poly(lactic acid) film immersed in alcohol solutions. Polymer Testing, 2020, 82, 106320.	2.3	5
13	Effect of modified atmosphere packaging (MAP) and NatureSeal® treatment on the physico-chemical, microbiological, and sensory quality of fresh-cut d'Anjou pears. Food Packaging and Shelf Life, 2020, 23, 100454.	3.3	17
14	Migration of antioxidants from polylactic acid films, a parameter estimation approach: Part II – assessment of partition, diffusion and convective mass transfer coefficients. Food Packaging and Shelf Life, 2020, 25, 100543.	3.3	0
15	Effect of Nano-Clay and Surfactant on the Biodegradation of Poly(Lactic Acid) Films. Polymers, 2020, 12, 311.	2.0	27
16	Migration of antioxidants from polylactic acid films, a parameter estimation approach: Reparameterization of the Arrhenius equation. Food Control, 2020, 113, 107208.	2.8	4
17	Hydrolytic degradation and lifetime prediction of poly(lactic acid) modified with a multifunctional epoxy-based chain extender. Polymer Testing, 2019, 80, 106108.	2.3	42
18	Graphene modifies the biodegradation of poly(lactic acid)-thermoplastic cassava starch reactive blend films. Polymer Degradation and Stability, 2019, 164, 187-197.	2.7	31

#	Article	IF	CITATIONS
19	Modeling American Household Fluid Milk Consumption and their Resulting Greenhouse Gas Emissions. Sustainability, 2019, 11, 2152.	1.6	5
20	Interaction of nanoclay-reinforced packaging nanocomposites with food simulants and compost environments. Advances in Food and Nutrition Research, 2019, 88, 275-298.	1.5	10
21	Effect of Babassu Mesocarp Incorporation on the Biodegradation of a PBAT/TPS Blend. Macromolecular Symposia, 2019, 383, 1800043.	0.4	8
22	Utilization of Carboxymethyl Cellulose from Durian Rind Agricultural Waste to Improve Physical Properties and Stability of Rice Starch-Based Film. Journal of Polymers and the Environment, 2019, 27, 286-298.	2.4	42
23	Statistical optimization of lipase production from Sphingobacterium sp. strain S2 and evaluation of enzymatic depolymerization of Poly(lactic acid) at mesophilic temperature. Polymer Degradation and Stability, 2019, 160, 1-13.	2.7	14
24	Packaging Strategies That Save Food: A Research Agenda for 2030. Journal of Industrial Ecology, 2019, 23, 532-540.	2.8	108
25	Control of hydrolytic degradation of Poly(lactic acid) by incorporation of chain extender: From bulk to surface erosion. Polymer Testing, 2018, 67, 190-196.	2.3	43
26	Active Chicken Meat Packaging Based on Polylactide Films and Bimetallic Ag–Cu Nanoparticles and Essential Oil. Journal of Food Science, 2018, 83, 1299-1310.	1.5	100
27	Chemical recycling of poly(lactic acid) by water-ethanol solutions. Polymer Degradation and Stability, 2018, 149, 28-38.	2.7	44
28	Improving the toughening in poly(lactic acid)â€ŧhermoplastic cassava starch reactive blends. Journal of Applied Polymer Science, 2018, 135, 46140.	1.3	21
29	Compression molded LLDPE films loaded with bimetallic (Ag-Cu) nanoparticles and cinnamon essential oil for chicken meat packaging applications. LWT - Food Science and Technology, 2018, 93, 329-338.	2.5	48
30	Environmental Sustainability of Fluid Milk Delivery Systems in the United States. Journal of Industrial Ecology, 2018, 22, 180-195.	2.8	20
31	Effect of MILâ€53 (Al) MOF particles on the chain mobility and crystallization of poly(L″actic acid). Journal of Applied Polymer Science, 2018, 135, 45690.	1.3	4
32	Preliminary quantification of the permeability, solubility and diffusion coefficients of major aroma compounds present in herbs through various plastic packaging materials. Journal of the Science of Food and Agriculture, 2018, 98, 1545-1553.	1.7	19
33	Migration of antioxidants from polylactic acid films: A parameter estimation approach and an overview of the current mass transfer models. Food Research International, 2018, 103, 515-528.	2.9	29
34	Migration of antioxidants from polylactic acid films, a parameter estimation approach: Part I – A model including convective mass transfer coefficient. Food Research International, 2018, 105, 920-929.	2.9	7
35	Multifunctional Ordered Bio-Based Mesoporous Framework from Edible Compounds. Journal of Biobased Materials and Bioenergy, 2018, 12, 449-454.	0.1	3
36	Biodegradable Rice Starch/Carboxymethyl Chitosan Films with Added Propolis Extract for Potential Use as Active Food Packaging. Polymers, 2018, 10, 954.	2.0	63

#	Article	IF	CITATIONS
37	Enhancing the biodegradation rate of poly(lactic acid) films and PLA bio-nanocomposites in simulated composting through bioaugmentation. Polymer Degradation and Stability, 2018, 154, 46-54.	2.7	70
38	Improvement of mechanical properties and thermal stability of biodegradable rice starch–based films blended with carboxymethyl chitosan. Industrial Crops and Products, 2018, 122, 37-48.	2.5	91
39	Impact of Nanoclays on the Biodegradation of Poly(Lactic Acid) Nanocomposites. Polymers, 2018, 10, 202.	2.0	65
40	Poly(lactic acid) mass transfer properties. Progress in Polymer Science, 2018, 86, 85-121.	11.8	71
41	Toughening of Poly(lactic acid) and Thermoplastic Cassava Starch Reactive Blends Using Graphene Nanoplatelets. Polymers, 2018, 10, 95.	2.0	49
42	Biodegradation of Poly(lactic acid) in Soil Microcosms at Ambient Temperature: Evaluation of Natural Attenuation, Bio-augmentation and Bio-stimulation. Journal of Polymers and the Environment, 2018, 26, 3848-3857.	2.4	65
43	Insights on the aerobic biodegradation of polymers by analysis of evolved carbon dioxide in simulated composting conditions. Polymer Degradation and Stability, 2017, 137, 251-271.	2.7	104
44	Rheological, structural, ultraviolet protection and oxygen barrier properties of linear low- density polyethylene films reinforced with zinc oxide (ZnO) nanoparticles. Food Packaging and Shelf Life, 2017, 13, 20-26.	3.3	43
45	A roadmap towards green packaging: the current status and future outlook for polyesters in the packaging industry. Green Chemistry, 2017, 19, 4737-4753.	4.6	251
46	Isolation and characterization of bacteria capable of degrading poly(lactic acid) at ambient temperature. Polymer Degradation and Stability, 2017, 144, 392-400.	2.7	57
47	Carbon nanotube release from polymers into a food simulant. Environmental Pollution, 2017, 229, 818-826.	3.7	7
48	Effect of nanoparticles on the hydrolytic degradation of PLA-nanocomposites by water-ethanol solutions. Polymer Degradation and Stability, 2017, 146, 287-297.	2.7	41
49	Effects of packaging materials on the aroma stability of Thai â€~tom yam' seasoning powder as determined by descriptive sensory analysis and gas chromatography-mass spectrometry. Journal of the Science of Food and Agriculture, 2017, 97, 1854-1860.	1.7	8
50	Thermo-mechanical, rheological, structural and antimicrobial properties of bionanocomposite films based on fish skin gelatin and silver-copper nanoparticles. Food Hydrocolloids, 2017, 62, 191-202.	5.6	222
51	Antimicrobial efficacy of clove essential oil infused into chemically modified LLDPE film for chicken meat packaging. Food Control, 2017, 73, 663-671.	2.8	135
52	Life cycle assessment of non-alcoholic single-serve polyethylene terephthalate beverage bottles in the state of California. Resources, Conservation and Recycling, 2017, 116, 45-52.	5.3	35
53	Barrier Properties of Polymeric Packaging Materials to Major Aroma Volatiles in Herbs. MATEC Web of Conferences, 2016, 67, 06100.	0.1	6
54	Poly(lactic acid)—Mass production, processing, industrial applications, and end of life. Advanced Drug Delivery Reviews, 2016, 107, 333-366.	6.6	895

#	Article	IF	CITATIONS
55	The Effect of Gamma and Electron Beam Irradiation on the Biodegradability of PLA Films. Journal of Polymers and the Environment, 2016, 24, 230-240.	2.4	18
56	Concurrent solvent induced crystallization and hydrolytic degradation of PLA by water-ethanol solutions. Polymer, 2016, 99, 315-323.	1.8	98
57	Synthesis of nanoporous carbohydrate metal-organic framework and encapsulation of acetaldehyde. Journal of Crystal Growth, 2016, 451, 72-78.	0.7	38
58	Evaluation of chlorine dioxide as an antimicrobial against Botrytis cinerea in California strawberries. Food Packaging and Shelf Life, 2016, 9, 45-54.	3.3	25
59	Life Cycle Assessment Software: Selection Can Impact Results. Journal of Industrial Ecology, 2016, 20, 18-28.	2.8	69
60	Development of an antioxidant biomaterial by promoting the deglycosylation of rutin to isoquercetin and quercetin. Food Chemistry, 2016, 204, 420-426.	4.2	44
61	Mechanical, structural and thermal properties of Ag–Cu and ZnO reinforced polylactide nanocomposite films. International Journal of Biological Macromolecules, 2016, 86, 885-892.	3.6	74
62	Modeling of surfactant release from polymer-clay nanocomposites into ethanol. Polymer Testing, 2016, 50, 57-63.	2.3	15
63	Effect of the Solvent on the Size of Clay Nanoparticles in Solution as Determined Using an Ultraviolet–Visible (UV-Vis) Spectroscopy Methodology. Applied Spectroscopy, 2015, 69, 671-678.	1.2	9
64	Choice of Life Cycle Assessment Software Can Impact Packaging System Decisions. Packaging Technology and Science, 2015, 28, 579-588.	1.3	32
65	The Influence of Cu ₃ (BTC) ₂ metal organic framework on the permeability and permâ€selectivity of PLLAâ€MOF mixed matrix membranes. Journal of Applied Polymer Science, 2015, 132, .	1.3	14
66	Effect of Irradiation on the Biodegradation of Cellophane Films. Journal of Polymers and the Environment, 2015, 23, 449-458.	2.4	14
67	Release of surfactants from organo-modified montmorillonite into solvents: Implications for polymer nanocomposites. Applied Clay Science, 2015, 105-106, 107-112.	2.6	6
68	Evaluation of Biodegradation-Promoting Additives for Plastics. Environmental Science & Technology, 2015, 49, 3769-3777.	4.6	91
69	In situ characterization of organo-modified and unmodified montmorillonite aqueous suspensions by UV–visible spectroscopy. Journal of Colloid and Interface Science, 2015, 456, 155-160.	5.0	8
70	Effects of molecular weight and grafted maleic anhydride of functionalized polylactic acid used in reactive compatibilized binary and ternary blends of polylactic acid and thermoplastic cassava starch. Journal of Applied Polymer Science, 2015, 132, .	1.3	37
71	Life cycle inventory data quality issues for bioplastics feedstocks. International Journal of Life Cycle Assessment, 2015, 20, 584-596.	2.2	20
72	Novel Active Surface Prepared by Embedded Functionalized Clays in an Acrylate Coating. ACS Applied Materials & Interfaces, 2015, 7, 24944-24949.	4.0	10

#	Article	IF	CITATIONS
73	Reaction and diffusion of chlorine dioxide gas under dark and light conditions at different temperatures. Journal of Food Engineering, 2015, 144, 20-28.	2.7	24
74	Multistate Evaluation of Plant Growth and Water Use in Plastic and Alternative Nursery Containers. HortTechnology, 2015, 25, 42-49.	0.5	10
75	Release of Nanoclay and Surfactant from Polymer–Clay Nanocomposites into a Food Simulant. Environmental Science & Technology, 2014, 48, 13617-13624.	4.6	42
76	Assessment of UV exposure and aerobic biodegradation of poly(butylene) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 degradation-promoting additives. Industrial Crops and Products, 2014, 60, 326-334.	0 627 Td (a 2.5	dipate-co-tere 18
77	Poly(lactic acid) film incorporated with marigold flower extract (Tagetes erecta) intended for fatty-food application. Food Control, 2014, 46, 55-66.	2.8	65
78	In situ quantification of chlorine dioxide gas consumption by fresh produce using UV–visible spectroscopy. Journal of Food Engineering, 2014, 131, 75-81.	2.7	13
79	Behavior of UVâ€cured print inks on LDPE and PBAT/TPS blend substrates during curing, postcuring, and accelerated degradation. Journal of Applied Polymer Science, 2014, 131, .	1.3	5
80	The Release of Carotenoids from a Light-Protected Antioxidant Active Packaging Designed to Improve the Stability of Soybean Oil. Food and Bioprocess Technology, 2014, 7, 3504-3515.	2.6	26
81	Migration of α-tocopherol and resveratrol from poly(L-lactic acid)/starch blends films into ethanol. Journal of Food Engineering, 2013, 116, 814-828.	2.7	33
82	Reactive functionalization of poly(lactic acid), PLA: Effects of the reactive modifier, initiator and processing conditions on the final grafted maleic anhydride content and molecular weight of PLA. Polymer Degradation and Stability, 2013, 98, 2697-2708.	2.7	89
83	Fluorescent labeling and tracking of nanoclay. Nanoscale, 2013, 5, 164-168.	2.8	31
84	Toughening of poly(l-lactic acid) with Cu3BTC2 metal organic framework crystals. Polymer, 2013, 54, 6979-6986.	1.8	24
85	Comparison of bacon packaging on a life cycle basis: a case study. Journal of Cleaner Production, 2013, 54, 142-149.	4.6	18
86	Effect of Maleicâ€Anhydride Grafting on the Physical and Mechanical Properties of Poly(<scp>L</scp> â€lactic acid)/Starch Blends. Macromolecular Materials and Engineering, 2013, 298, 624-633.	1.7	42
87	Detection and quantification of montmorillonite nanoclay in water-ethanol solutions by graphite furnace atomic absorption spectrometry. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2013, 30, 2177-2183.	1.1	8
88	Bionanocomposites of Cassava Starch and Synthetic Clay. Journal of Carbohydrate Chemistry, 2013, 32, 483-501.	0.4	7
89	Deterioration of metal–organic framework crystal structure during fabrication of poly(<scp>l</scp> â€lactic acid) mixedâ€matrix membranes. Polymer International, 2013, 62, 1144-1151.	1.6	21
90	Assessment of the properties of poly(L-lactic acid) sheets produced with differing amounts of postconsumer recycled poly(L-lactic acid). Journal of Plastic Film and Sheeting, 2012, 28, 314-335.	1.3	36

#	Article	IF	CITATIONS
91	Antioxidant Activity and Diffusion of Catechin and Epicatechin from Antioxidant Active Films Made of Poly(<scp>l</scp> -lactic acid). Journal of Agricultural and Food Chemistry, 2012, 60, 6515-6523.	2.4	75
92	Poly(<scp>L</scp> ″actic acid) metal organic framework composites: optical, thermal and mechanical properties. Polymer International, 2012, 61, 30-37.	1.6	32
93	Poly(<scp>L</scp> â€lactic acid) with added αâ€tocopherol and resveratrol: optical, physical, thermal and mechanical properties. Polymer International, 2012, 61, 418-425.	1.6	49
94	Development and characterization of antimicrobial poly(l-lactic acid) containing trans-2-hexenal trapped in cyclodextrins. International Journal of Food Microbiology, 2012, 153, 297-305.	2.1	33
95	Grafting of maleic anhydride on poly(L-lactic acid). Effects on physical and mechanical properties. Polymer Testing, 2012, 31, 333-344.	2.3	123
96	Rheological, thermal and structural behavior of poly(Îμ-caprolactone) and nanoclay blended films. Journal of Food Engineering, 2012, 111, 580-589.	2.7	45
97	Poly(<scp>l</scp> -lactic acid) Metal Organic Framework Composites. Mass Transport Properties. Industrial & Engineering Chemistry Research, 2011, 50, 11136-11142.	1.8	24
98	Effect of acid hydrolysis on rheological and thermal characteristics of lentil starch slurry. LWT - Food Science and Technology, 2011, 44, 976-983.	2.5	41
99	Characterization and antimicrobial properties of fluorine-rich carbon films deposited on poly(lactic) Tj ETQq1 1	0.784314 2.2	rgBT_/Overloc
100	Formulation selection of aliphatic aromatic biodegradable polyester film exposed to UV/solar radiation. Polymer Degradation and Stability, 2011, 96, 1919-1926.	2.7	32
101	Fabrication of poly(lactic acid) films with resveratrol and the diffusion of resveratrol into ethanol. Journal of Applied Polymer Science, 2011, 121, 970-978.	1.3	49
102	Preparation and characterization of blends made of poly(l-lactic acid) and β-cyclodextrin: Improvement of the blend properties by using a masterbatch. Carbohydrate Polymers, 2011, 86, 1022-1030.	5.1	25
103	Comparative shelf life study of blackberry fruit in bio-based and petroleum-based containers under retail storage conditions. Food Chemistry, 2011, 126, 1734-1740.	4.2	70
104	Release of α-Tocopherol from Poly(lactic acid) films, and its effect on the oxidative stability of soybean oil. Journal of Food Engineering, 2011, 104, 508-517.	2.7	105
105	An exploratory model for predicting post-consumer recycled PET content in PET sheets. Polymer Testing, 2011, 30, 60-68.	2.3	19
106	Release of butylated hydroxytoluene (BHT) from Poly(lactic acid) films. Polymer Testing, 2011, 30, 463-471.	2.3	62
107	Effect of recycled poly(ethylene terephthalate) content on properties of extruded poly(ethylene) Tj ETQq1 1 0.	784314 rgl 1.3	3T /Overlock
108	Atmospheric and soil degradation of aliphatic–aromatic polyester films. Polymer Degradation and Stability, 2010, 95, 99-107.	2.7	149

#	Article	IF	CITATIONS
109	Biodegradation and hydrolysis rate of aliphatic aromatic polyester. Polymer Degradation and Stability, 2010, 95, 2641-2647.	2.7	254
110	Effect of chlorine dioxide gas on physical, thermal, mechanical, and barrier properties of polymeric packaging materials. Journal of Applied Polymer Science, 2010, 115, 1742-1750.	1.3	9
111	Poly(lactic acid) and zeolite composites prepared by melt processing: Morphological and physical–mechanical properties. Journal of Applied Polymer Science, 2010, 115, 2262-2270.	1.3	35
112	Design and performance evaluation of multilayer packaging films for blister packaging applications. Journal of Applied Polymer Science, 2010, 116, 2846-2856.	1.3	1
113	Consumer acceptance of fresh blueberries in bio-based packages. Journal of the Science of Food and Agriculture, 2010, 90, 1121-1128.	1.7	42
114	Poly(lactic acid)/Aluminum Oxide Composites Fabricated by Solâ€Gel and Melt Compounding Processes. Macromolecular Materials and Engineering, 2010, 295, 283-292.	1.7	7
115	Effects of synthetic and natural zeolites on morphology and thermal degradation of poly(lactic acid) composites. Polymer Degradation and Stability, 2010, 95, 1769-1777.	2.7	92
116	Effect of plasma treatment on hydrophobicity and barrier property of polylactic acid. Surface and Coatings Technology, 2010, 204, 2933-2939.	2.2	74
117	Thermal and Rheological Properties of Lâ€Polylactide/Polyethylene Glycol/Silicate Nanocomposites Films. Journal of Food Science, 2010, 75, N97-108.	1.5	67
118	Industrial Composting of Poly(Lactic Acid) Bottles. Journal of Testing and Evaluation, 2010, 38, 717-723.	0.4	4
119	Effects of Packaging Materials Processed with Oak Charcoal on the Quality of Oriental Pears during Storage and Distribution. Journal of Biosystems Engineering, 2010, 35, 316-322.	1.2	2
120	Examining the conspicuousness and prominence of two required warnings on OTC pain relievers. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 6550-6555.	3.3	34
121	Bioadhesive from Distiller's Dried Grains with Solubles. Advanced Materials Research, 2009, 87-88, 357-361.	0.3	0
122	Measurement and prediction of the concentration of 1â€methylcyclopropene in treatment chambers containing different packaging materials. Journal of the Science of Food and Agriculture, 2009, 89, 2581-2587.	1.7	6
123	Mass transfer study of chlorine dioxide gas through polymeric packaging materials. Journal of Applied Polymer Science, 2009, 114, 2929-2936.	1.3	12
124	Assessment of the environmental profile of PLA, PET and PS clamshell containers using LCA methodology. Journal of Cleaner Production, 2009, 17, 1183-1194.	4.6	235
125	Production and Properties of Spin oated Cassava‣tarchâ€Glycerolâ€Beeswax Films. Starch/Staerke, 2009, 61, 463-471.	1.1	17
126	Factors Affecting Migration of Vanillin from Chitosan/Methyl Cellulose Films. Journal of Food Science, 2009, 74, C549-55.	1.5	25

#	Article	IF	CITATIONS
127	Determination of eugenol diffusion through LLDPE using FTIR-ATR flow cell and HPLC techniques. Polymer, 2009, 50, 1470-1482.	1.8	65
128	Degradation of Biodegradable Polymers in Real and Simulated Composting Conditions. ACS Symposium Series, 2009, , 31-40.	0.5	5
129	Mass Transfer of Moisture in Sheets and Resins of Two Partially Renewable Polyesters. Journal of Biobased Materials and Bioenergy, 2009, 3, 429-436.	0.1	1
130	Compostability of polymers. Polymer International, 2008, 57, 793-804.	1.6	144
131	Impact of polymer processing on sorption of benzaldehyde vapor in amorphous and semicrystalline polypropylene. Journal of Applied Polymer Science, 2008, 110, 1509-1514.	1.3	6
132	Measuring gel content of aromatic polyesters using FTIR spectrophotometry and DSC. Polymer Testing, 2008, 27, 55-60.	2.3	41
133	Processing technologies for poly(lactic acid). Progress in Polymer Science, 2008, 33, 820-852.	11.8	2,233
134	Postharvest shelf life extension of blueberries using a biodegradable package. Food Chemistry, 2008, 110, 120-127.	4.2	105
135	Assessment of aliphatic–aromatic copolyester biodegradable mulch films. Part I: Field study. Chemosphere, 2008, 71, 942-953.	4.2	148
136	Assessment of aliphatic–aromatic copolyester biodegradable mulch films. Part II: Laboratory simulated conditions. Chemosphere, 2008, 71, 1607-1616.	4.2	94
137	Field Performance of Aliphatic-aromatic Copolyester Biodegradable Mulch Films in a Fresh Market Tomato Production System. HortTechnology, 2008, 18, 605-610.	0.5	49
138	Release of Acetaldehyde from β-Cyclodextrins Inhibits Postharvest Decay Fungi in Vitro. Journal of Agricultural and Food Chemistry, 2007, 55, 7205-7212.	2.4	31
139	Solubility of Gases and Vapors in Polylactide Polymers. , 2007, , 343-368.		10
140	Compostability of Bioplastic Packaging Materials: An Overview. Macromolecular Bioscience, 2007, 7, 255-277.	2.1	415
141	Biodegradability of polylactide bottles in real and simulated composting conditions. Polymer Testing, 2007, 26, 1049-1061.	2.3	314
142	Use of a magnetic suspension microbalance to measure organic vapor sorption for evaluating the impact of polymer converting process. Polymer Testing, 2007, 26, 1082-1089.	2.3	5
143	Comparison of the degradability of poly(lactide) packages in composting and ambient exposure conditions. Packaging Technology and Science, 2007, 20, 49-70.	1.3	139
144	WAKE UP! The effectiveness of a student response system in large packaging classes. Packaging Technology and Science, 2007, 20, 183-195.	1.3	20

#	Article	IF	CITATIONS
145	A new technique to prevent the main post harvest diseases in berries during storage: Inclusion complexes β-cyclodextrin-hexanal. International Journal of Food Microbiology, 2007, 118, 164-172.	2.1	52
146	Development of an automatic laboratory-scale respirometric system to measure polymer biodegradability. Polymer Testing, 2006, 25, 1006-1016.	2.3	75
147	Degradation of Commercial Biodegradable Packages under Real Composting and Ambient Exposure Conditions. Journal of Polymers and the Environment, 2006, 14, 317-334.	2.4	131
148	Sorption of ethyl acetate and d-limonene in poly(lactide) polymers. Journal of the Science of Food and Agriculture, 2006, 86, 648-656.	1.7	94
149	Performance Evaluation of PLA against Existing PET and PS Containers. Journal of Testing and Evaluation, 2006, 34, 100041.	0.4	9
150	Encapsulation of Naturally Occurring Antifungal Compound into ß-cyclodextrins: A New Technology for Reducing Postharvest Losses. Hortscience: A Publication of the American Society for Hortcultural Science, 2006, 41, 990A-990.	0.5	0
151	Evaluation of oriented poly(lactide) polymers vs. existing PET and oriented PS for fresh food service containers. Packaging Technology and Science, 2005, 18, 207-216.	1.3	234
152	Wear behavior, microstructure, and dimensional stability of as-cast zinc-aluminum/SIC (metal matrix) Tj ETQq0 0 Science, 2004, 35, 1579-1590.	0 rgBT /O [.] 1.1	verlock 10 Tf 34
153	Effect of water on the oxygen barrier properties of poly(ethylene terephthalate) and polylactide films. Journal of Applied Polymer Science, 2004, 92, 1790-1803.	1.3	155
154	An Overview of Polylactides as Packaging Materials. Macromolecular Bioscience, 2004, 4, 835-864.	2.1	2,810
155	Mechanical, Physical, and Barrier Properties of Poly(Lactide) Films. Journal of Plastic Film and Sheeting, 2003, 19, 123-135.	1.3	285