Jingli Cao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/449192/publications.pdf

Version: 2024-02-01

18	1,204	14	17
papers	citations	h-index	g-index
20	20	20	2054
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Identification of enhancer regulatory elements that direct epicardial gene expression during zebrafish heart regeneration. Development (Cambridge), 2022, 149, .	2.5	14
2	Enhancer selection dictates gene expression responses in remote organs during tissue regeneration. Nature Cell Biology, 2022, 24, 685-696.	10.3	22
3	Ex Vivo Techniques to Study Heart Regeneration in Zebrafish. Methods in Molecular Biology, 2021, 2158, 211-222.	0.9	0
4	Epicardium in Heart Development. Cold Spring Harbor Perspectives in Biology, 2020, 12, a037192.	5 . 5	31
5	Covering and Re-Covering the Heart: Development and Regeneration of the Epicardium. Journal of Cardiovascular Development and Disease, 2019, 6, 3.	1.6	10
6	Vitamin D Stimulates Cardiomyocyte Proliferation and Controls Organ Size and Regeneration in Zebrafish. Developmental Cell, 2019, 48, 853-863.e5.	7.0	82
7	The epicardium as a hub for heart regeneration. Nature Reviews Cardiology, 2018, 15, 631-647.	13.7	159
8	abLIM1 constructs non-erythroid cortical actin networks to prevent mechanical tension-induced blebbing. Cell Discovery, 2018, 4, 42.	6.7	10
9	Tension Creates an Endoreplication Wavefront that Leads Regeneration of Epicardial Tissue. Developmental Cell, 2017, 42, 600-615.e4.	7.0	103
10	Explant culture of adult zebrafish hearts for epicardial regeneration studies. Nature Protocols, 2016, 11, 872-881.	12.0	40
11	Multicolor mapping of the cardiomyocyte proliferation dynamics that construct the atrium. Development (Cambridge), 2016, 143, 1688-96.	2.5	23
12	Characterization of Tetratricopeptide Repeat-Containing Proteins Critical for Cilia Formation and Function. PLoS ONE, 2015, 10, e0124378.	2. 5	45
13	Single epicardial cell transcriptome sequencing identifies Caveolin-1 as an essential factor in zebrafish heart regeneration. Development (Cambridge), 2015, 143, 232-43.	2.5	99
14	Epicardial regeneration is guided by cardiac outflow tract and Hedgehog signalling. Nature, 2015, 522, 226-230.	27.8	184
15	The Cep63 paralogue Deup1 enables massive deÂnovo centriole biogenesis for vertebrate multiciliogenesis. Nature Cell Biology, 2013, 15, 1434-1444.	10.3	171
16	miR-129-3p controls cilia assembly by regulating CP110 and actin dynamics. Nature Cell Biology, 2012, 14, 697-706.	10.3	146
17	Nudel Promotes Axonal Lysosome Clearance and Endoâ€lysosome Formation via Dyneinâ€Mediated Transport. Traffic, 2009, 10, 1337-1349.	2.7	35
18	The microtubule plus end-binding protein EB1 is involved in Sertoli cell plasticity in testicular seminiferous tubules. Experimental Cell Research, 2008, 314, 213-226.	2.6	29