Inyup Paik

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/449176/publications.pdf

Version: 2024-02-01

24 1,856 16 24
papers citations h-index g-index

29 29 29 2085
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Improved Bst DNA Polymerase Variants Derived <i>via</i> a Machine Learning Approach. Biochemistry, 2023, 62, 410-418.	2.5	20
2	Preparation and Use of Cellular Reagents: A Lowâ€resource Molecular Biology Reagent Platform. Current Protocols, 2022, 2, e387.	2.9	4
3	Charge Engineering Improves the Performance of Bst DNA Polymerase Fusions. ACS Synthetic Biology, 2022, 11, 1488-1496.	3.8	14
4	Direct phosphorylation of HY5 by SPA kinases to regulate photomorphogenesis in Arabidopsis. New Phytologist, 2021, 230, 2311-2326.	7.3	35
5	Phytochrome Signaling Networks. Annual Review of Plant Biology, 2021, 72, 217-244.	18.7	130
6	Producing molecular biology reagents without purification. PLoS ONE, 2021, 16, e0252507.	2.5	9
7	SPAs promote thermomorphogenesis via regulating the phyB-PIF4 module in <i>Arabidopsis</i> Development (Cambridge), 2020, 147, .	2.5	33
8	One-Enzyme Reverse Transcription qPCR Using Taq DNA Polymerase. Biochemistry, 2020, 59, 4638-4645.	2.5	20
9	Genomic evidence reveals <scp>SPA</scp> â€regulated developmental and metabolic pathways in darkâ€grown <scp><i>Arabidopsis</i></scp> seedlings. Physiologia Plantarum, 2020, 169, 380-396.	5.2	9
10	Rapid Examination of Phytochrome–Phytochrome Interacting Factor (PIF) Interaction by In Vitro Coimmunoprecipitation Assay. Methods in Molecular Biology, 2019, 2026, 21-28.	0.9	3
11	A phyB-PIF1-SPA1 kinase regulatory complex promotes photomorphogenesis in Arabidopsis. Nature Communications, 2019, 10, 4216.	12.8	80
12	Plant photoreceptors: Multi-functional sensory proteins and their signaling networks. Seminars in Cell and Developmental Biology, 2019, 92, 114-121.	5.0	166
13	Trehaloseâ€6â€phosphate signaling regulates thermoresponsive hypocotyl growth in <i>ArabidopsisÂthaliana</i> . EMBO Reports, 2019, 20, e47828.	4.5	43
14	PIF-mediated sucrose regulation of the circadian oscillator is light quality and temperature dependent. Genes, 2018, 9, 628.	2.4	11
15	Characterization of Phytochrome Interacting Factors from the Moss <i>Physcomitrella patens</i> Illustrates Conservation of Phytochrome Signaling Modules in Land Plants. Plant Cell, 2017, 29, 310-330.	6.6	61
16	<scp>PHYTOCHROME INTERACTING FACTORS</scp> mediate metabolic control of the circadian system in Arabidopsis. New Phytologist, 2017, 215, 217-228.	7.3	63
17	Expanding Roles of PIFs in Signal Integration from Multiple Processes. Molecular Plant, 2017, 10, 1035-1046.	8.3	172
18	PCH1 and PCHL promote photomorphogenesis in plants by controlling phytochrome B dark reversion. Nature Communications, 2017, 8, 2221.	12.8	41

#	Article	IF	CITATION
19	High Ambient Temperature Represses Anthocyanin Biosynthesis through Degradation of HY5. Frontiers in Plant Science, 2017, 8, 1787.	3.6	90
20	CUL4 forms an E3 ligase with COP1 and SPA to promote light-induced degradation of PIF1. Nature Communications, 2015, 6, 7245.	12.8	97
21	Illuminating Progress in Phytochrome-Mediated Light Signaling Pathways. Trends in Plant Science, 2015, 20, 641-650.	8.8	179
22	PHYTOCHROME INTERACTING FACTOR1 Enhances the E3 Ligase Activity of CONSTITUTIVE PHOTOMORPHOGENIC1 to Synergistically Repress Photomorphogenesis in <i>Arabidopsis</i> Â Â. Plant Cell, 2014, 26, 1992-2006.	6.6	78
23	Phytochrome regulates translation of mRNA in the cytosol. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 1335-1340.	7.1	75
24	PIL5, a Phytochrome-Interacting bHLH Protein, Regulates Gibberellin Responsiveness by Binding Directly to the GAI and RGA Promoters in Arabidopsis Seeds. Plant Cell, 2007, 19, 1192-1208.	6.6	405