Stella A Ordoudi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/44917/publications.pdf

Version: 2024-02-01

34 papers

1,039 citations

430754 18 h-index 434063 31 g-index

34 all docs 34 docs citations

34 times ranked 1262 citing authors

#	Article	IF	Citations
1	Strategic Priorities of the Scientific Plan of the European Research Infrastructure METROFOOD-RI for Promoting Metrology in Food and Nutrition. Foods, 2022, 11, 599.	1.9	6
2	Bay Laurel (Laurus nobilis L.) Essential Oil as a Food Preservative Source: Chemistry, Quality Control, Activity Assessment, and Applications to Olive Industry Products. Foods, 2022, 11, 752.	1.9	16
3	Rapid Assessment of Anthocyanins Content of Onion Waste through Visible-Near-Short-Wave and Mid-Infrared Spectroscopy Combined with Machine Learning Techniques. Sustainability, 2021, 13, 6588.	1.6	2
4	On the Effect of Microwave Heating on Quality Characteristics and Functional Properties of Persimmon Juice and Its Residue. Foods, 2021, 10, 2650.	1.9	10
5	Diagnostic Potential of FT-IR Fingerprinting in Botanical Origin Evaluation of Laurus nobilis L. Essential Oil is Supported by GC-FID-MS Data. Molecules, 2020, 25, 583.	1.7	14
6	Physicochemical Characterization of <i>Crocus serotinus</i> Stigmas Indicates Their Potential as a Source of the Bioactive Apocarotenoid Crocetin. European Journal of Lipid Science and Technology, 2019, 121, 1900011.	1.0	4
7	A stepwise approach for the detection of carminic acid in saffron with regard to religious food certification. Food Chemistry, 2018, 267, 410-419.	4.2	24
8	The Potential of Tree Fruit Stone and Seed Wastes in Greece as Sources of Bioactive Ingredients. Recycling, 2018, 3, 9.	2.3	26
9	Uncovering a challenging case of adulterated commercial saffron. Food Control, 2017, 81, 147-155.	2.8	30
10	Greek PDO saffron authentication studies using species specific molecular markers. Food Research International, 2017, 100, 899-907.	2.9	24
11	Food Fraud., 2016,, 35-42.		3
12	Insight of Saffron Proteome by Gel-Electrophoresis. Molecules, 2016, 21, 167.	1.7	12
13	On the Traceability of Commercial Saffron Samples Using 1H-NMR and FT-IR Metabolomics. Molecules, 2016, 21, 286.	1.7	34
14	Ion-pair assisted extraction followed by 1H NMR determination of biogenic amines in food and biological matrices. Food Chemistry, 2016, 202, 445-450.	4.2	19
15	Enhanced Bioaccessibility of Crocetin Sugar Esters from Saffron in Infusions Rich in Natural Phenolic Antioxidants. Molecules, 2015, 20, 17760-17774.	1.7	19
16	1H NMR-based metabolomics of saffron reveals markers for its quality deterioration. Food Research International, 2015, 70, 1-6.	2.9	55
17	Measuring Antioxidant and Prooxidant Capacity Using the Crocin Bleaching Assay (CBA). Methods in Molecular Biology, 2015, 1208, 329-344.	0.4	6
18	On the quality control of traded saffron by means of transmission Fourier-transform mid-infrared (FT-MIR) spectroscopy and chemometrics. Food Chemistry, 2014, 150, 414-421.	4.2	96

#	Article	IF	CITATIONS
19	Pomegranate juice functional constituents after alcoholic and acetic acid fermentation. Journal of Functional Foods, 2014, 8, 161-168.	1.6	49
20	An on-line high performance liquid chromatography-crocin bleaching assay for detection of antioxidants. Journal of Chromatography A, 2012, 1237, 80-85.	1.8	18
21	Consideration of fluorescence properties for the direct determination of erythrosine in saffron in the presence of other synthetic dyes. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2011, 28, 417-422.	1.1	11
22	Structure-radical scavenging activity relationship of alkannin/shikonin derivatives. Food Chemistry, 2011, 124, 171-176.	4.2	41
23	DETECTION OF ERYTHROSINE IN SAFFRON. Acta Horticulturae, 2010, , 225-230.	0.1	3
24	MANUAL PROCEDURE TO ASSESS PRO-/ANTIOXIDANT IMBALANCE IN HUMAN PLASMA BASED ON THE CROCIN BLEACHING ASSAY (CBA). Acta Horticulturae, 2010, , 211-216.	0.1	0
25	Structure–antioxidant activity relationship study of natural hydroxybenzaldehydes using in vitro assays. Food Research International, 2010, 43, 2014-2019.	2.9	42
26	Further Examination of Antiradical Properties of <i>Crocus sativus</i> Stigmas Extract Rich in Crocins. Journal of Agricultural and Food Chemistry, 2009, 57, 3080-3086.	2.4	66
27	Kinetics of Individual Crocetin Ester Degradation in Aqueous Extracts of Saffron (Crocus sativus L.) upon Thermal Treatment in the Dark. Journal of Agricultural and Food Chemistry, 2008, 56, 1627-1637.	2.4	62
28	OBSERVATIONS ON THE APPLICABILITY OF COMMONLY USED RADICAL SCAVENGING ASSAYS TO ASSESSMENT OF ANTIOXIDANT ACTIVITY OF PHENOLIC ANTIOXIDANTS. Acta Horticulturae, 2008, , 65-78.	0.1	0
29	Crocin Bleaching Assay (CBA) in Structureâ ⁻ Radical Scavenging Activity Studies of Selected Phenolic Compounds. Journal of Agricultural and Food Chemistry, 2006, 54, 9347-9356.	2.4	50
30	Structureâ^'DPPH• Scavenging Activity Relationships:  Parallel Study of Catechol and Guaiacol Acid Derivatives. Journal of Agricultural and Food Chemistry, 2006, 54, 5763-5768.	2.4	64
31	Crocin Bleaching Assay Step by Step:Â Observations and Suggestions for an Alternative Validated Protocol. Journal of Agricultural and Food Chemistry, 2006, 54, 1663-1671.	2.4	57
32	Near-Infrared Spectroscopy in Saffron Quality Control:Â Determination of Chemical Composition and Geographical Origin. Journal of Agricultural and Food Chemistry, 2005, 53, 9337-9341.	2.4	113
33	Screening method for the detection of artificial colours in saffron using derivative UV-Vis spectrometry after precipitation of crocetin. Food Additives and Contaminants, 2005, 22, 607-615.	2.0	58
34	DETECTION OF ARTIFICIAL RED COLORANTS IN SAFFRON USING UV-VIS SPECTROMETRY AND TRISTIMULUS COLORIMETRY. Acta Horticulturae, 2004, , 331-338.	0.1	5