Samarjit Das

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4491461/publications.pdf Version: 2024-02-01

SAMADUT DAS

#	Article	IF	CITATIONS
1	Chirality and asymmetry increase the potency of candidate ADRM1/RPN13 inhibitors. PLoS ONE, 2021, 16, e0256937.	2.5	4
2	Degradation of Premature-miR-181b by the Translin/Trax RNase Increases Vascular Smooth Muscle Cell Stiffness. Hypertension, 2021, 78, 831-839.	2.7	2
3	Role of miR-181c in Diet-induced obesity through regulation of lipid synthesis in liver. PLoS ONE, 2021, 16, e0256973.	2.5	2
4	Structure-function analyses of candidate small molecule RPN13 inhibitors with antitumor properties. PLoS ONE, 2020, 15, e0227727.	2.5	6
5	Nuclear-mitochondrial communication involving miR-181c plays an important role in cardiac dysfunction during obesity. Journal of Molecular and Cellular Cardiology, 2020, 144, 87-96.	1.9	12
6	THE ROLE OF THE DEGRADATION OF MIRNA-181B BY THE TRANSLIN/TRAX COMPLEX IN THE PATHOLOGIC PROCESS OF VASCULAR STIFFENING WITH AGING. Journal of the American College of Cardiology, 2019, 73, 2087.	2.8	0
7	Deletion of the microRNA-degrading nuclease, translin/trax, prevents pathogenic vascular stiffness. American Journal of Physiology - Heart and Circulatory Physiology, 2019, 317, H1116-H1124.	3.2	13
8	Exosomal non-coding RNAs (Exo-ncRNAs) in cardiovascular health. Journal of Molecular and Cellular Cardiology, 2019, 137, 143-151.	1.9	13
9	Differences in microRNA-29 and Pro-fibrotic Gene Expression in Mouse and Human Hypertrophic Cardiomyopathy. Frontiers in Cardiovascular Medicine, 2019, 6, 170.	2.4	26
10	miRâ€181c Activates Mitochondrial Calcium Uptake by Regulating MICU1 in the Heart. Journal of the American Heart Association, 2019, 8, e012919.	3.7	18
11	Hotspot SF3B1 mutations induce metabolic reprogramming and vulnerability to serine deprivation. Journal of Clinical Investigation, 2019, 129, 4708-4723.	8.2	41
12	Abstract 544: microRNA181c Activates Mitochondrial Calcium Uptake by Regulating Micu1 in the Heart. Circulation Research, 2019, 125, .	4.5	0
13	The Influence of MicroRNAs on Mitochondrial Calcium. Frontiers in Physiology, 2018, 9, 1291.	2.8	19
14	A microRNA's journey to the center of the mitochondria. American Journal of Physiology - Heart and Circulatory Physiology, 2018, 315, H206-H215.	3.2	52
15	In Vivo Nanovector Delivery of a Heart-specific MicroRNA-sponge. Journal of Visualized Experiments, 2018, , .	0.3	3
16	Divergent Effects of miRâ€181 Family Members on Myocardial Function Through Protective Cytosolic and Detrimental Mitochondrial microRNA Targets. Journal of the American Heart Association, 2017, 6, .	3.7	74
17	Exosomal MicroRNA-15a Transfer from the Pancreas Augments Diabetic Complications by Inducing Oxidative Stress. Antioxidants and Redox Signaling, 2017, 27, 913-930.	5.4	100
18	Mitochondrial miRNAs in diabetes: just the tip of the iceberg. Canadian Journal of Physiology and Pharmacology, 2017, 95, 1156-1162.	1.4	32

SAMARJIT DAS

#	Article	IF	CITATIONS
19	miR-181c Regulates Mitochondrial Calcium Influx by targeting Cytochrome C Oxidase subunit 1. Journal of Molecular and Cellular Cardiology, 2017, 112, 151.	1.9	0
20	MitomiRs Keep the Heart Beating. Advances in Experimental Medicine and Biology, 2017, 982, 431-450.	1.6	8
21	miR-181b regulates vascular stiffness age dependently in part by regulating TGF-Î ² signaling. PLoS ONE, 2017, 12, e0174108.	2.5	60
22	Abstract 140: Role of miR-181c in Mitochondrial Matrix Calcium Accumulation During Ischemia/Reperfusion Injury in the Heart. Circulation Research, 2017, 121, .	4.5	0
23	Extracellular vesicle microRNA transfer in cardiovascular disease. Cardiovascular Pathology, 2015, 24, 199-206.	1.6	157
24	Mitochondrial miRNA (MitomiR): a new player in cardiovascular health. Canadian Journal of Physiology and Pharmacology, 2015, 93, 855-861.	1.4	60
25	ErbB2 overexpression upregulates antioxidant enzymes, reduces basal levels of reactive oxygen species, and protects against doxorubicin cardiotoxicity. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 309, H1271-H1280.	3.2	85
26	Abstract 19446: Role of miR-181 Family in the Heart: A Tale of Two Intracellular Compartments. Circulation, 2015, 132, .	1.6	0
27	miR-181c Regulates the Mitochondrial Genome, Bioenergetics, and Propensity for Heart Failure In Vivo. PLoS ONE, 2014, 9, e96820.	2.5	128
28	The Next Generation of Diagnostic Biomarkers for Type 2 Diabetes. , 2014, , 313-321.		1
29	Nuclear miRNA Regulates the Mitochondrial Genome in the Heart. Circulation Research, 2012, 110, 1596-1603.	4.5	298
30	Mitochondrial adenine nucleotide transport and cardioprotection. Journal of Molecular and Cellular Cardiology, 2012, 52, 448-453.	1.9	18
31	Does the voltage dependent anion channel modulate cardiac ischemia–reperfusion injury?. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 1451-1456.	2.6	26
32	Application of systems biology principles to protein biomarker discovery: Urinary exosomal proteome in renal transplantation. Proteomics - Clinical Applications, 2012, 6, 268-278.	1.6	52
33	A composite polymer nanoparticle overcomes multidrug resistance and ameliorates doxorubicin-associated cardiomyopathy. Oncotarget, 2012, 3, 640-650.	1.8	79
34	Cardioprotection and altered mitochondrial adenine nucleotide transport. Basic Research in Cardiology, 2009, 104, 149-156.	5.9	29
35	Glycogen Synthase Kinase 3 Inhibition Slows Mitochondrial Adenine Nucleotide Transport and Regulates Voltage-Dependent Anion Channel Phosphorylation. Circulation Research, 2008, 103, 983-991.	4.5	171
36	Alterations in both death and survival signals for apoptosis in heart failure due to volume overload. Journal of Molecular and Cellular Cardiology, 2007, 43, 726-732.	1.9	30