Samarjit Das

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4491461/publications.pdf

Version: 2024-02-01

36	1,619	19	30
papers	citations	h-index	g-index
37	37	37	2869
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Nuclear miRNA Regulates the Mitochondrial Genome in the Heart. Circulation Research, 2012, 110 , $1596-1603$.	4.5	298
2	Glycogen Synthase Kinase 3 Inhibition Slows Mitochondrial Adenine Nucleotide Transport and Regulates Voltage-Dependent Anion Channel Phosphorylation. Circulation Research, 2008, 103, 983-991.	4.5	171
3	Extracellular vesicle microRNA transfer in cardiovascular disease. Cardiovascular Pathology, 2015, 24, 199-206.	1.6	157
4	miR-181c Regulates the Mitochondrial Genome, Bioenergetics, and Propensity for Heart Failure In Vivo. PLoS ONE, 2014, 9, e96820.	2.5	128
5	Exosomal MicroRNA-15a Transfer from the Pancreas Augments Diabetic Complications by Inducing Oxidative Stress. Antioxidants and Redox Signaling, 2017, 27, 913-930.	5.4	100
6	ErbB2 overexpression upregulates antioxidant enzymes, reduces basal levels of reactive oxygen species, and protects against doxorubicin cardiotoxicity. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 309, H1271-H1280.	3.2	85
7	A composite polymer nanoparticle overcomes multidrug resistance and ameliorates doxorubicin-associated cardiomyopathy. Oncotarget, 2012, 3, 640-650.	1.8	79
8	Divergent Effects of miRâ€181 Family Members on Myocardial Function Through Protective Cytosolic and Detrimental Mitochondrial microRNA Targets. Journal of the American Heart Association, 2017, 6, .	3.7	74
9	Mitochondrial miRNA (MitomiR): a new player in cardiovascular health. Canadian Journal of Physiology and Pharmacology, 2015, 93, 855-861.	1.4	60
10	miR-181b regulates vascular stiffness age dependently in part by regulating TGF- \hat{l}^2 signaling. PLoS ONE, 2017, 12, e0174108.	2. 5	60
11	Application of systems biology principles to protein biomarker discovery: Urinary exosomal proteome in renal transplantation. Proteomics - Clinical Applications, 2012, 6, 268-278.	1.6	52
12	A microRNA's journey to the center of the mitochondria. American Journal of Physiology - Heart and Circulatory Physiology, 2018, 315, H206-H215.	3.2	52
13	Hotspot SF3B1 mutations induce metabolic reprogramming and vulnerability to serine deprivation. Journal of Clinical Investigation, 2019, 129, 4708-4723.	8.2	41
14	Mitochondrial miRNAs in diabetes: just the tip of the iceberg. Canadian Journal of Physiology and Pharmacology, 2017, 95, 1156-1162.	1.4	32
15	Alterations in both death and survival signals for apoptosis in heart failure due to volume overload. Journal of Molecular and Cellular Cardiology, 2007, 43, 726-732.	1.9	30
16	Cardioprotection and altered mitochondrial adenine nucleotide transport. Basic Research in Cardiology, 2009, 104, 149-156.	5.9	29
17	Does the voltage dependent anion channel modulate cardiac ischemia–reperfusion injury?. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 1451-1456.	2.6	26
18	Differences in microRNA-29 and Pro-fibrotic Gene Expression in Mouse and Human Hypertrophic Cardiomyopathy. Frontiers in Cardiovascular Medicine, 2019, 6, 170.	2.4	26

#	Article	IF	CITATIONS
19	The Influence of MicroRNAs on Mitochondrial Calcium. Frontiers in Physiology, 2018, 9, 1291.	2.8	19
20	Mitochondrial adenine nucleotide transport and cardioprotection. Journal of Molecular and Cellular Cardiology, 2012, 52, 448-453.	1.9	18
21	miRâ€181c Activates Mitochondrial Calcium Uptake by Regulating MICU1 in the Heart. Journal of the American Heart Association, 2019, 8, e012919.	3.7	18
22	Deletion of the microRNA-degrading nuclease, translin/trax, prevents pathogenic vascular stiffness. American Journal of Physiology - Heart and Circulatory Physiology, 2019, 317, H1116-H1124.	3.2	13
23	Exosomal non-coding RNAs (Exo-ncRNAs) in cardiovascular health. Journal of Molecular and Cellular Cardiology, 2019, 137, 143-151.	1.9	13
24	Nuclear-mitochondrial communication involving miR-181c plays an important role in cardiac dysfunction during obesity. Journal of Molecular and Cellular Cardiology, 2020, 144, 87-96.	1.9	12
25	MitomiRs Keep the Heart Beating. Advances in Experimental Medicine and Biology, 2017, 982, 431-450.	1.6	8
26	Structure-function analyses of candidate small molecule RPN13 inhibitors with antitumor properties. PLoS ONE, 2020, 15, e0227727.	2.5	6
27	Chirality and asymmetry increase the potency of candidate ADRM1/RPN13 inhibitors. PLoS ONE, 2021, 16, e0256937.	2.5	4
28	In Vivo Nanovector Delivery of a Heart-specific MicroRNA-sponge. Journal of Visualized Experiments, 2018, , .	0.3	3
29	Degradation of Premature-miR-181b by the Translin/Trax RNase Increases Vascular Smooth Muscle Cell Stiffness. Hypertension, 2021, 78, 831-839.	2.7	2
30	Role of miR-181c in Diet-induced obesity through regulation of lipid synthesis in liver. PLoS ONE, 2021, 16, e0256973.	2.5	2
31	The Next Generation of Diagnostic Biomarkers for Type 2 Diabetes. , 2014, , 313-321.		1
32	miR-181c Regulates Mitochondrial Calcium Influx by targeting Cytochrome C Oxidase subunit 1. Journal of Molecular and Cellular Cardiology, 2017, 112, 151.	1.9	0
33	THE ROLE OF THE DEGRADATION OF MIRNA-181B BY THE TRANSLIN/TRAX COMPLEX IN THE PATHOLOGIC PROCESS OF VASCULAR STIFFENING WITH AGING. Journal of the American College of Cardiology, 2019, 73, 2087.	2.8	0
34	Abstract 19446: Role of miR-181 Family in the Heart: A Tale of Two Intracellular Compartments. Circulation, 2015, 132, .	1.6	0
35	Abstract 544: microRNA181c Activates Mitochondrial Calcium Uptake by Regulating Micu1 in the Heart. Circulation Research, 2019, 125, .	4.5	0
36	Abstract 140: Role of miR-181c in Mitochondrial Matrix Calcium Accumulation During Ischemia/Reperfusion Injury in the Heart. Circulation Research, 2017, 121, .	4.5	0