Frederique Vegran

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4491392/publications.pdf

Version: 2024-02-01

62 papers

5,853 citations

172457 29 h-index 138484 58 g-index

67 all docs

67 docs citations

67 times ranked

10300 citing authors

#	Article	IF	CITATIONS
1	Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice. Journal of Clinical Investigation, 2008, 118, 3930-42.	8.2	1,225
2	Lactate Influx through the Endothelial Cell Monocarboxylate Transporter MCT1 Supports an NF-κB/IL-8 Pathway that Drives Tumor Angiogenesis. Cancer Research, 2011, 71, 2550-2560.	0.9	637
3	Chemotherapy-triggered cathepsin B release in myeloid-derived suppressor cells activates the Nlrp3 inflammasome and promotes tumor growth. Nature Medicine, 2013, 19, 57-64.	30.7	634
4	Targeting the Lactate Transporter MCT1 in Endothelial Cells Inhibits Lactate-Induced HIF-1 Activation and Tumor Angiogenesis. PLoS ONE, 2012, 7, e33418.	2.5	412
5	The receptor NLRP3 is a transcriptional regulator of TH2 differentiation. Nature Immunology, 2015, 16, 859-870.	14.5	312
6	Stat3 and Gfi-1 Transcription Factors Control Th17 Cell Immunosuppressive Activity via the Regulation of Ectonucleotidase Expression. Immunity, 2012, 36, 362-373.	14.3	275
7	Accumulation of MDSC and Th17 Cells in Patients with Metastatic Colorectal Cancer Predicts the Efficacy of a FOLFOX–Bevacizumab Drug Treatment Regimen. Cancer Research, 2016, 76, 5241-5252.	0.9	203
8	The transcription factor IRF1 dictates the IL-21-dependent anticancer functions of TH9 cells. Nature Immunology, 2014, 15, 758-766.	14.5	187
9	Regulation of Monocarboxylate Transporter MCT1 Expression by p53 Mediates Inward and Outward Lactate Fluxes in Tumors. Cancer Research, 2012, 72, 939-948.	0.9	172
10	PD-1/PD-L1 pathway: an adaptive immune resistance mechanism to immunogenic chemotherapy in colorectal cancer. Oncolmmunology, 2018, 7, e1433981.	4.6	167
11	STAT3 activation. Jak-stat, 2013, 2, e23010.	2.2	159
12	Liver X receptor \hat{l}^2 activation induces pyroptosis of human and murine colon cancer cells. Cell Death and Differentiation, 2014, 21, 1914-1924.	11.2	127
13	Bleomycin Exerts Ambivalent Antitumor Immune Effect by Triggering Both Immunogenic Cell Death and Proliferation of Regulatory T Cells. PLoS ONE, 2013, 8, e65181.	2.5	103
14	Dacarbazine-Mediated Upregulation of NKG2D Ligands on Tumor Cells Activates NK and CD8 T Cells and Restrains Melanoma Growth. Journal of Investigative Dermatology, 2013, 133, 499-508.	0.7	75
15	Overexpression of Caspase-3s Splice Variant in Locally Advanced Breast Carcinoma Is Associated with Poor Response to Neoadjuvant Chemotherapy. Clinical Cancer Research, 2006, 12, 5794-5800.	7.0	67
16	Restoration of Antitumor Immunity Through Selective Inhibition of Myeloid Derived Suppressor Cells by Anticancer Therapies. Current Molecular Medicine, 2011, 11, 365-372.	1.3	64
17	TH9 cells in anti-tumor immunity. Seminars in Immunopathology, 2017, 39, 39-46.	6.1	63
18	Association of p53 gene alterations with the expression of antiapoptotic survivin splice variants in breast cancer. Oncogene, 2007, 26, 290-297.	5.9	60

#	Article	IF	CITATIONS
19	Transcriptional regulation of the survivin gene. Molecular Biology Reports, 2014, 41, 233-240.	2.3	59
20	Th9 Cells: A Novel CD4 T-cell Subset in the Immune War against Cancer. Cancer Research, 2015, 75, 475-479.	0.9	56
21	Cleaved Caspase-3 Transcriptionally Regulates Angiogenesis-Promoting Chemotherapy Resistance. Cancer Research, 2019, 79, 5958-5970.	0.9	55
22	SOCS3 Transactivation by PPARγ Prevents IL-17–Driven Cancer Growth. Cancer Research, 2013, 73, 3578-3590.	0.9	51
23	Recruitment and activation of type 3 innate lymphoid cells promote antitumor immune responses. Nature Immunology, 2022, 23, 262-274.	14.5	47
24	IRF8-dependent molecular complexes control the Th9 transcriptional program. Nature Communications, 2017, 8, 2085.	12.8	43
25	The transcription factor GATA-1 is overexpressed in breast carcinomas and contributes to survivin upregulation via a promoter polymorphism. Oncogene, 2010, 29, 2577-2584.	5.9	42
26	The expression of BIRC5 is correlated with loss of specific chromosomal regions in breast carcinomas. Genes Chromosomes and Cancer, 2008, 47, 299-308.	2.8	40
27	Human ectonucleotidase-expressing CD25 ^{high} Th17 cells accumulate in breast cancer tumors and exert immunosuppressive functions. Oncolmmunology, 2016, 5, e1055444.	4.6	39
28	The transfer of multigene panel testing for hereditary breast and ovarian cancer to healthcare: What are the implications for the management of patients and families? Oncotarget, 2017, 8, 1957-1971.	1.8	38
29	Only Missense Mutations Affecting the DNA Binding Domain of P53 Influence Outcomes in Patients with Breast Carcinoma. PLoS ONE, 2013, 8, e55103.	2.5	36
30	A Short Caspase-3 Isoform Inhibits Chemotherapy-Induced Apoptosis by Blocking Apoptosome Assembly. PLoS ONE, 2011, 6, e29058.	2.5	33
31	Role of Cytokines and Chemokines in Angiogenesis in a Tumor Context. Cancers, 2022, 14, 2446.	3.7	32
32	Gene expression profile and response to trastuzumab–docetaxel-based treatment in breast carcinoma. British Journal of Cancer, 2009, 101, 1357-1364.	6.4	27
33	Apoptosis gene signature of Survivin and its splice variant expression in breast carcinoma. Endocrine-Related Cancer, 2011, 18, 783-792.	3.1	26
34	Survivin-3B Potentiates Immune Escape in Cancer but Also Inhibits the Toxicity of Cancer Chemotherapy. Cancer Research, 2013, 73, 5391-5401.	0.9	23
35	Predictive value of survivin alternative transcript expression in locally advanced breast cancer patients treated with neoadjuvant chemotherapy. International Journal of Molecular Medicine, 2009, 23, 285-91.	4.0	22
36	CD4 T cell-intrinsic STING signaling controls the differentiation and effector functions of T _H 1 and T _H 9 cells., 2022, 10, e003459.		21

#	Article	IF	CITATIONS
37	Modulation of CD4 T Cell Response According to Tumor Cytokine Microenvironment. Cancers, 2021, 13, 373.	3.7	18
38	Distinct expression of Survivin splice variants in breast carcinomas. International Journal of Oncology, 2005, 27, 1151-7.	3.3	18
39	Impact of Lipid Metabolism on Antitumor Immune Response. Cancers, 2022, 14, 1850.	3.7	18
40	Efficiency of olaparib in colorectal cancer patients with an alteration of the homologous repair protein. World Journal of Gastroenterology, 2016, 22, 10680.	3.3	15
41	Alternative Splicing in Cancer and Immune Cells. Cancers, 2022, 14, 1726.	3.7	15
42	Regulation of T cell antitumor immune response by tumor induced metabolic stress. Cell Stress, 2019, 3, 9-18.	3.2	14
43	Distinct expression of Survivin splice variants in breast carcinomas. International Journal of Oncology, 2005, 27, 1151.	3.3	13
44	Predictive value of survivin alternative transcript expression in locally advanced breast cancer patients treated with neoadjuvant chemotherapy. International Journal of Molecular Medicine, 1998, 23, 285.	4.0	12
45	Transcriptional Programs Underlying Cd4 T Cell Differentiation and Functions. International Review of Cell and Molecular Biology, 2018, 341, 1-61.	3.2	12
46	Survivin-3B promotes chemoresistance and immune escape by inhibiting caspase-8 and -6 in cancer cells. Oncolmmunology, 2013, 2, e26328.	4.6	10
47	Transcriptome analysis of TH2 CD4+ T cells differentiated from wild-type and NLRP3KO mice. Genomics Data, 2015, 5, 314-315.	1.3	10
48	Socs3 induction by PPARÎ ³ restrains cancer-promoting inflammation. Cell Cycle, 2013, 12, 2157-2158.	2.6	8
49	The Tumor Microenvironment Impairs Th1 IFN \hat{I}^3 Secretion through Alternative Splicing Modifications of <i>Irf1</i> Pre-mRNA. Cancer Immunology Research, 2021, 9, 324-336.	3.4	8
50	Variations in Gene Expression and Response to Neoadjuvant Chemotherapy in Breast Carcinoma. Cancer Investigation, 2009, 27, 521-528.	1.3	6
51	Lactate-Induced IL-8 Pathway in Endothelial Cells—Response: Figure 1 Cancer Research, 2012, 72, 1903-1904.	0.9	6
52	Transcriptional expression of 8 genes predicts pathological response to first-line docetaxel + trastuzumab-based neoadjuvant chemotherapy. BMC Cancer, 2015, 15, 169.	2.6	5
53	Patterns of loss of heterozygosity in breast carcinoma during neoadjuvant chemotherapy. International Journal of Oncology, 0, , .	3.3	5
54	<scp>NLRP6 /scp> negatively regulates type 2 immune responses in mice. Allergy: European Journal of Allergy and Clinical Immunology, 2022, 77, 3320-3336.</scp>	5.7	4

#	Article	IF	Citations
55	Protein Kinase Inhibitor-Mediated Immunoprophylactic and Immunotherapeutic Control of Colon Cancer. Frontiers in Immunology, 2022, 13, 875764.	4.8	2
56	Hematopoietic Prostaglandin D2 Synthase Controls Tfh/Th2 Communication and Limits Tfh Antitumor Effects. Cancer Immunology Research, 2022, 10, 900-916.	3.4	2
57	Proximity Ligation Assay (PLA) Protocol Using Duolink® for T Cells. Bio-protocol, 2016, 6, .	0.4	1
58	The transfer of multigene panel testing for hereditary breast and ovarian cancer to healthcare: What are the implications for the management of patients and families?. Journal of Clinical Oncology, 2016, 34, e13116-e13116.	1.6	1
59	Transcription Factor Binding Studies in CD4+ T Cells: siRNA Transfection, Chromatin Immunoprecipitation, and Liquid Luminescent DNA Precipitation Assay. Methods in Molecular Biology, 2017, 1585, 167-177.	0.9	O
60	O28 Importance of pro-inflammatory immune lymphocyte Th17 in antitumoral properties of resveratrol, a polyphenol of wine. Biochemical Pharmacology, 2017, 139, 118-119.	4.4	0
61	Role of IL-17 and IL-17 Family Cytokines on Tumor Development. , 2013, , 219-230.		O
62	Liquid Luminescent DNA-precipitation Assay. Bio-protocol, 2016, 6, .	0.4	0