Dorleta Jimenez de Aberasturi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4491/publications.pdf

Version: 2024-02-01

45 papers 7,578 citations

270111 25 h-index 252626 46 g-index

47 all docs

47
docs citations

times ranked

47

14938 citing authors

#	Article	IF	CITATIONS
1	Robust Encapsulation of Biocompatible Gold Nanosphere Assemblies for Bioimaging via Surface Enhanced Raman Scattering. Advanced Optical Materials, 2022, 10, .	3.6	5
2	SERS and Fluorescence-Active Multimodal Tessellated Scaffolds for Three-Dimensional Bioimaging. ACS Applied Materials & Distribution (2018) amp; Interfaces, 2022, 14, 20708-20719.	4.0	15
3	Combination of Live Cell Surface-Enhanced Raman Scattering Imaging with Chemometrics to Study Intracellular Nanoparticle Dynamics. ACS Sensors, 2022, 7, 1747-1756.	4.0	7
4	SERSTEM: An app for the statistical analysis of correlative SERS and TEM imaging and evaluation of SERS tags performance. Journal of Raman Spectroscopy, 2021, 52, 355-365.	1.2	9
5	Nd ³⁺ -Doped Lanthanum Oxychloride Nanocrystals as Nanothermometers. Journal of Physical Chemistry C, 2021, 125, 19887-19896.	1.5	12
6	Present and Future of Surface-Enhanced Raman Scattering. ACS Nano, 2020, 14, 28-117.	7.3	2,153
7	Live-Cell Surface-Enhanced Raman Spectroscopy Imaging of Intracellular pH: From Two Dimensions to Three Dimensions. ACS Sensors, 2020, 5, 3194-3206.	4.0	32
8	3Dâ€Printed Biocompatible Scaffolds with Builtâ€In Nanoplasmonic Sensors. Advanced Functional Materials, 2020, 30, 2005407.	7.8	24
9	Shielded Silver Nanorods for Bioapplications. Chemistry of Materials, 2020, 32, 5879-5889.	3.2	30
10	SERS-based immunoassay for monitoring cortisol-related disorders. Biosensors and Bioelectronics, 2020, 165, 112418.	5.3	32
11	Using SERS Tags to Image the Threeâ€Dimensional Structure of Complex Cell Models. Advanced Functional Materials, 2020, 30, 1909655.	7.8	44
12	Surface-Enhanced Raman Scattering Tags for Three-Dimensional Bioimaging and Biomarker Detection. ACS Sensors, 2019, 4, 1126-1137.	4.0	111
13	Encapsulation of Noble Metal Nanoparticles through Seeded Emulsion Polymerization as Highly Stable Plasmonic Systems. Advanced Functional Materials, 2019, 29, 1809071.	7.8	23
14	Size-Dependent Transport and Cytotoxicity of Mitomycin-Gold Nanoparticle Conjugates in 2D and 3D Mammalian Cell Models. Bioconjugate Chemistry, 2019, 30, 242-252.	1.8	17
15	Composite Polymer Colloids for SERSâ€Based Applications. Chemical Record, 2018, 18, 807-818.	2.9	23
16	Ion-Selective Ligands: How Colloidal Nano- and Micro-Particles Can Introduce New Functionalities. Zeitschrift Fur Physikalische Chemie, 2018, 232, 1307-1317.	1.4	8
17	Anisotropic metal nanoparticles for surface enhanced Raman scattering. Chemical Society Reviews, 2017, 46, 3866-3885.	18.7	415
18	Janus plasmonic–magnetic gold–iron oxide nanoparticles as contrast agents for multimodal imaging. Nanoscale, 2017, 9, 9467-9480.	2.8	145

#	Article	lF	Citations
19	Colloidal Gold Nanoparticles Induce Changes in Cellular and Subcellular Morphology. ACS Nano, 2017, 11, 7807-7820.	7.3	88
20	Spatial Analysis of Metal–PLGA Hybrid Microstructures Using 3D SERS Imaging. Advanced Functional Materials, 2017, 27, 1701626.	7.8	37
21	Involvement of two uptake mechanisms of gold and iron oxide nanoparticles in a co-exposure scenario using mouse macrophages. Beilstein Journal of Nanotechnology, 2017, 8, 2396-2409.	1.5	18
22	Gold Nanostar-Coated Polystyrene Beads as Multifunctional Nanoprobes for SERS Bioimaging. Journal of Physical Chemistry C, 2016, 120, 20860-20868.	1.5	69
23	Surface Enhanced Raman Scattering Encoded Gold Nanostars for Multiplexed Cell Discrimination. Chemistry of Materials, 2016, 28, 6779-6790.	3.2	147
24	Some thoughts about the intracellular location of nanoparticles and the resulting consequences. Journal of Colloid and Interface Science, 2016, 482, 260-266.	5.0	19
25	Inulin coated plasmonic gold nanoparticles as a tumor-selective tool for cancer therapy. Journal of Materials Chemistry B, 2016, 4, 1150-1155.	2.9	47
26	Synthesis of Janus plasmonic–magnetic, star–sphere nanoparticles, and their application in SERS detection. Faraday Discussions, 2016, 191, 47-59.	1.6	58
27	Determining the exact number of dye molecules attached to colloidal CdSe/ZnS quantum dots in Förster resonant energy transfer assemblies. Journal of Applied Physics, 2015, 117, 024701.	1.1	20
28	Modern Applications of Plasmonic Nanoparticles: From Energy to Health. Advanced Optical Materials, 2015, 3, 602-617.	3.6	209
29	In vivo integrity of polymer-coated gold nanoparticles. Nature Nanotechnology, 2015, 10, 619-623.	15.6	314
30	A General Method for Solvent Exchange of Plasmonic Nanoparticles and Self-Assembly into SERS-Active Monolayers. Langmuir, 2015, 31, 9205-9213.	1.6	119
31	Particle-Based Optical Sensing of Intracellular Ions at the Example of Calcium - What Are the Experimental Pitfalls?. Small, 2015, 11, 896-904.	5.2	27
32	Multiplexed measurements by time resolved spectroscopy using colloidal CdSe/ZnS quantum dots. Applied Physics Letters, 2014, 104, 041901.	1.5	19
33	R-MnO2 nanourchins: a promising catalyst in Li-O2 batteries. Materials Research Society Symposia Proceedings, 2014, 1643, 1.	0.1	1
34	Modeling Nanoparticle–Alveolar Epithelial Cell Interactions under Breathing Conditions Using Captive Bubble Surfactometry. Langmuir, 2014, 30, 4924-4932.	1.6	19
35	Interaction of colloidal nanoparticles with their local environment: the (ionic) nanoenvironment around nanoparticles is different from bulk and determines the physico-chemical properties of the nanoparticles. Journal of the Royal Society Interface, 2014, 11, 20130931.	1.5	308
36	Microstructural improvements of the gradient composite material Pr0.6Sr0.4Fe0.8Co0.2O3/Ce0.8Sm0.2O1.9 by employing vertically aligned carbon nanotubes. International Journal of Hydrogen Energy, 2014, 39, 4074-4080.	3.8	3

#	Article	IF	Citations
37	The Challenge To Relate the Physicochemical Properties of Colloidal Nanoparticles to Their Cytotoxicity. Accounts of Chemical Research, 2013, 46, 743-749.	7.6	330
38	Optical Sensing of Small Ions with Colloidal Nanoparticles. Chemistry of Materials, 2012, 24, 738-745.	3.2	60
39	Antibacterial properties of nanoparticles. Trends in Biotechnology, 2012, 30, 499-511.	4.9	2,113
40	The State of Nanoparticle-Based Nanoscience and Biotechnology: Progress, Promises, and Challenges. ACS Nano, 2012, 6, 8468-8483.	7.3	211
41	Effect of the Strontium Content on the Electrochemical Performance of the Perovskite-Type Pr1-xSrxFe0.8Co0.2O3 Oxides. ECS Transactions, 2011, 35, 2183-2190.	0.3	2
42	A straightforward synthesis of carbon nanotube–perovskite composites for solid oxide fuel cells. Journal of Materials Chemistry, 2011, 21, 10273.	6.7	11
43	Recovery by hydrometallurgical extraction of the platinum-group metals from car catalytic converters. Minerals Engineering, 2011, 24, 505-513.	1.8	152
44	Pr-doped ceria nanoparticles as intermediate temperature ionic conductors. International Journal of Hydrogen Energy, 2011, 36, 10981-10990.	3.8	22
45	Synthesis of highly ordered three-dimensional nanostructures and the influence of the temperature on their application as solid oxide fuel cells cathodes. Journal of Power Sources, 2011, 196, 4174-4180.	4.0	12