Shahram Misaghi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4490928/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A ribonucleoproteinâ€based decaplex <scp>CRISPR</scp> /Cas9 knockout strategy for <scp>CHO</scp> host engineering. Biotechnology Progress, 2022, 38, e3212.	2.6	3
2	Bax and Bak knockout apoptosisâ€resistant Chinese hamster ovary cell lines significantly improve culture viability and titer in intensified fedâ€batch culture process. Biotechnology Progress, 2022, 38, e3228.	2.6	7
3	Concurrent transfection of randomized transgene configurations into targeted integration CHO host is an advantageous and costâ€effective method for expression of complex molecules. Biotechnology Journal, 2021, 16, e2000230.	3.5	3
4	Preventing pyruvate kinase muscle expression in <scp>Chinese</scp> hamster ovary cells curbs lactogenic behavior by altering glycolysis, gating pyruvate generation, and increasing pyruvate flux into the <scp>TCA</scp> cycle. Biotechnology Progress, 2021, 37, e3193.	2.6	4
5	Endothelial intercellular cell adhesion molecule 1 contributes to cell aggregate formation in CHO cells cultured in serumâ€free media. Biotechnology Progress, 2020, 36, e2951.	2.6	4
6	Insulin degrading enzyme (IDE) expressed by Chinese hamster ovary (CHO) cells is responsible for degradation of insulin in culture media. Journal of Biotechnology, 2020, 320, 44-49.	3.8	5
7	Tailoring translational strength using Kozak sequence variants improves bispecific antibody assembly and reduces productâ€related impurities in CHO cells. Biotechnology and Bioengineering, 2020, 117, 1946-1960.	3.3	16
8	UBR E3 ligases and the PDIA3 protease control degradation of unfolded antibody heavy chain by ERAD. Journal of Cell Biology, 2020, 219, .	5.2	4
9	Pyruvate Kinase Muscleâ€1 Expression Appears to Drive Lactogenic Behavior in CHO Cell Lines, Triggering Lower Viability and Productivity: A Case Study. Biotechnology Journal, 2019, 14, 1800332.	3.5	7
10	Utilizing a regulated targeted integration cell line development approach to systematically investigate what makes an antibody difficult to express. Biotechnology Progress, 2019, 35, e2772.	2.6	7
11	High Intracellular Seed Train BiP Levels Correlate With Poor Production Culture Performance in CHO Cells. Biotechnology Journal, 2018, 13, e1700746.	3.5	3
12	Supplementation of Nucleosides During Selection can Reduce Sequence Variant Levels in CHO Cells Using GS/MSX Selection System. Biotechnology Journal, 2018, 13, 1700335.	3.5	2
13	Beating the odds: The poisson distribution of all input cells during limiting dilution grossly underestimates whether a cell line is clonallyâ€derived or not. Biotechnology Progress, 2018, 34, 559-569.	2.6	17
14	Probing the importance of clonality: Single cell subcloning of clonally derived CHO cell lines yields widely diverse clones differing in growth, productivity, and product quality. Biotechnology Progress, 2018, 34, 624-634.	2.6	36
15	Taming hyperactive h <scp>DN</scp> ase I: Stable inducible expression of a hyperactive salt―and actinâ€resistant variant of human deoxyribonuclease I in <scp>CHO</scp> cells. Biotechnology Progress, 2017, 33, 523-533.	2.6	12
16	FX knockout CHO hosts can express desired ratios of fucosylated or afucosylated antibodies with high titers and comparable product quality. Biotechnology and Bioengineering, 2017, 114, 632-644.	3.3	37
17	Carboxypeptidase D is the only enzyme responsible for antibody Câ€ŧerminal lysine cleavage in Chinese hamster ovary (CHO) cells. Biotechnology and Bioengineering, 2016, 113, 2100-2106.	3.3	30
18	Slashing the timelines: Opting to generate high-titer clonal lines faster via viability-based single cell sorting. Biotechnology Progress, 2016, 32, 198-207.	2.6	14

SHAHRAM MISAGHI

#	Article	IF	CITATIONS
19	It's time to regulate: Coping with productâ€induced nongenetic clonal instability in CHO cell lines via regulated protein expression. Biotechnology Progress, 2014, 30, 1432-1440.	2.6	24
20	Resilient immortals, characterizing and utilizing Bax/Bak deficient Chinese hamster ovary (CHO) cells for high titer antibody production. Biotechnology Progress, 2013, 29, 727-737.	2.6	15
21	Chinese hamster ovary K1 host cell enables stable cell line development for antibody molecules which are difficult to express in DUXB11â€derived dihydrofolate reductase deficient host cell. Biotechnology Progress, 2013, 29, 980-985.	2.6	40
22	Increased Targeting of Donor Switch Region and IgE in Sγ1-Deficient B Cells. Journal of Immunology, 2010, 185, 166-173.	0.8	18
23	Association of C-Terminal Ubiquitin Hydrolase BRCA1-Associated Protein 1 with Cell Cycle Regulator Host Cell Factor 1. Molecular and Cellular Biology, 2009, 29, 2181-2192.	2.3	187