
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4490745/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Limits of Defect Tolerance in Perovskite Nanocrystals: Effect of Local Electrostatic Potential on Trap States. Journal of the American Chemical Society, 2022, 144, 11059-11063.	6.6	19
2	A handle on charge reorganization. Nature Chemistry, 2022, 14, 720-722.	6.6	1
3	Naphthalenediimide/Formamidinium-Based Low-Dimensional Perovskites. Chemistry of Materials, 2021, 33, 6412-6420.	3.2	16
4	Excited state dynamics of BODIPY-based acceptor–donor–acceptor systems: a combined experimental and computational study. Physical Chemistry Chemical Physics, 2021, 23, 8900-8907.	1.3	5
5	Effect of Coâ€Solvents on the Crystallization and Phase Distribution of Mixedâ€Dimensional Perovskites. Advanced Energy Materials, 2021, 11, 2102144.	10.2	25
6	Semiaromatic polyamides with enhanced charge carrier mobility. Polymer Chemistry, 2021, 12, 6914-6926.	1.9	1
7	Solid-State Infrared Upconversion in Perylene Diimides Followed by Direct Electron Injection. ACS Energy Letters, 2020, 5, 124-129.	8.8	25
8	Directing charge transfer in perylene based light-harvesting antenna molecules. Journal of Chemical Physics, 2020, 153, 144302.	1.2	1
9	Unravelling the structural complexity and photophysical properties of adamantyl-based layered hybrid perovskites. Journal of Materials Chemistry A, 2020, 8, 17732-17740.	5.2	14
10	Structure–property relationships in multi-stimuli responsive BODIPY-biphenyl-benzodithiophene TICT rigidochromic rotors exhibiting (pseudo-)Stokes shifts up to 221 nm. Physical Chemistry Chemical Physics, 2020, 22, 25514-25521.	1.3	9
11	Structural Dynamics of Two-Dimensional Ruddlesden–Popper Perovskites: A Computational Study. Journal of Physical Chemistry C, 2020, 124, 22096-22104.	1.5	13
12	Potential and limitations of CsBi3I10 as a photovoltaic material. Journal of Materials Chemistry A, 2020, 8, 15670-15674.	5.2	21
13	Single-molecule functionality in electronic components based on orbital resonances. Physical Chemistry Chemical Physics, 2020, 22, 12849-12866.	1.3	17
14	Trapping and Detrapping in Colloidal Perovskite Nanoplatelets: Elucidation and Prevention of Nonradiative Processes through Chemical Treatment. Journal of Physical Chemistry C, 2020, 124, 8047-8054.	1.5	21
15	Assessing the Role of Pt Clusters on TiO ₂ (P25) on the Photocatalytic Degradation of Acid Blue 9 and Rhodamine B. Journal of Physical Chemistry C, 2020, 124, 8269-8278.	1.5	30
16	Engineering polymers with improved charge transport properties from bithiophene-containing polyamides. Journal of Materials Chemistry C, 2020, 8, 6281-6292.	2.7	5
17	Inducing Charge Separation in Solid-State Two-Dimensional Hybrid Perovskites through the Incorporation of Organic Charge-Transfer Complexes. Journal of Physical Chemistry Letters, 2020, 11, 824-830.	2.1	40
18	Efficacious elimination of intramolecular charge transfer in perylene imide based light-harvesting antenna molecules. Chemical Communications, 2020, 56, 5560-5563.	2.2	2

#	Article	IF	CITATIONS
19	2D layered perovskite containing functionalised benzothieno-benzothiophene molecules: formation, degradation, optical properties and photoconductivity. Journal of Materials Chemistry C, 2020, 8, 7181-7188.	2.7	17
20	Tuning the Structural Rigidity of Two-Dimensional Ruddlesden–Popper Perovskites through the Organic Cation. Journal of Physical Chemistry C, 2020, 124, 28201-28209.	1.5	9
21	Lead-Halide Perovskites Meet Donor–Acceptor Charge-Transfer Complexes. Chemistry of Materials, 2019, 31, 6880-6888.	3.2	36
22	Perylene Bisimide Dyes with up to Five Independently Introduced Substituents: Controlling the Functionalization Pattern and Photophysical Properties Using Regiospecific Bay Substitution. Journal of Organic Chemistry, 2019, 84, 9532-9547.	1.7	24
23	The effect of the magnitude and direction of the dipoles of organic cations on the electronic structure of hybrid halide perovskites. Physical Chemistry Chemical Physics, 2019, 21, 16564-16572.	1.3	22
24	The effect of structural dimensionality on carrier mobility in lead-halide perovskites. Journal of Materials Chemistry A, 2019, 7, 23949-23957.	5.2	38
25	Interplay between Charge Carrier Mobility, Exciton Diffusion, Crystal Packing, and Charge Separation in Perylene Diimide-Based Heterojunctions. ACS Applied Energy Materials, 2019, 2, 8010-8021.	2.5	28
26	Singlet Fission in Crystalline Organic Materials: Recent Insights and Future Directions. Journal of Physical Chemistry Letters, 2019, 10, 7208-7214.	2.1	59
27	Relation between molecular packing and singlet fission in thin films of brominated perylenediimides. Journal of Chemical Physics, 2019, 151, 094301.	1.2	21
28	The Relation between Rotational Dynamics of the Organic Cation and Phase Transitions in Hybrid Halide Perovskites. Journal of Physical Chemistry C, 2019, 123, 14652-14661.	1.5	34
29	Charge Photogeneration and Transport in AgBiS ₂ Nanocrystal Films for Photovoltaics. Solar Rrl, 2019, 3, 1900075.	3.1	20
30	Tailoring Photophysical Processes of Perylene-Based Light Harvesting Antenna Systems with Molecular Structure and Solvent Polarity. Journal of Physical Chemistry C, 2019, 123, 36-47.	1.5	16
31	Charge Carrier Dynamics in Cs ₂ AgBiBr ₆ Double Perovskite. Journal of Physical Chemistry C, 2018, 122, 4809-4816.	1.5	131
32	Morphologyâ€Independent Efficient Singlet Exciton Fission in Perylene Diimide Thin Films. ChemPlusChem, 2018, 83, 230-238.	1.3	30
33	Multi-layered hybrid perovskites templated with carbazole derivatives: optical properties, enhanced moisture stability and solar cell characteristics. Journal of Materials Chemistry A, 2018, 6, 22899-22908.	5.2	42
34	Band-Like Charge Transport in Cs ₂ AgBiBr ₆ and Mixed Antimony–Bismuth Cs ₂ AgBi _{1–<i>x</i>} Sb _{<i>x</i>} Br ₆ Halide Double Perovskites. ACS Omega, 2018, 3, 11655-11662.	1.6	84
35	Computational Design of Two-Dimensional Perovskites with Functional Organic Cations. Journal of Physical Chemistry C, 2018, 122, 17118-17122.	1.5	51
36	High Electronic Conductance through Double-Helix DNA Molecules with Fullerene Anchoring Groups. Journal of Physical Chemistry A, 2017, 121, 1182-1188.	1.1	30

#	Article	IF	CITATIONS
37	The relationship between molecular structure and electronic properties in dicyanovinyl substituted acceptor-donor-acceptor chromophores. Tetrahedron, 2017, 73, 4994-5004.	1.0	21
38	Temperature Dependent Charge Carrier Dynamics in Formamidinium Lead Iodide Perovskite. Journal of Physical Chemistry C, 2017, 121, 23392-23397.	1.5	51
39	Interconversion between Free Charges and Bound Excitons in 2D Hybrid Lead Halide Perovskites. Journal of Physical Chemistry C, 2017, 121, 26566-26574.	1.5	123
40	Photogeneration and Mobility of Charge Carriers in Atomically Thin Colloidal InSe Nanosheets Probed by Ultrafast Terahertz Spectroscopy. Journal of Physical Chemistry Letters, 2016, 7, 4191-4196.	2.1	33
41	Hole Cooling Is Much Faster than Electron Cooling in PbSe Quantum Dots. ACS Nano, 2016, 10, 695-703.	7.3	49
42	Radiative and Nonradiative Recombination in CuInS ₂ Nanocrystals and CuInS ₂ -Based Core/Shell Nanocrystals. Journal of Physical Chemistry Letters, 2016, 7, 3503-3509.	2.1	119
43	Organic Linker Defines the Excitedâ€State Decay of Photocatalytic MILâ€125(Ti)â€Type Materials. ChemSusChem, 2016, 9, 388-395.	3.6	84
44	Computational design of donor-bridge-acceptor systems exhibiting pronounced quantum interference effects. Physical Chemistry Chemical Physics, 2016, 18, 6773-6779.	1.3	12
45	Charge transfer versus molecular conductance: molecular orbital symmetry turns quantum interference rules upside down. Chemical Science, 2015, 6, 4196-4206.	3.7	38
46	Density of Trap States and Auger-mediated Electron Trapping in CdTe Quantum-Dot Solids. Nano Letters, 2015, 15, 3056-3066.	4.5	84
47	Different Mechanisms for Hole and Electron Transfer along Identical Molecular Bridges: The Importance of the Initial State Delocalization. Journal of Physical Chemistry A, 2014, 118, 3891-3898.	1.1	16
48	Nature and Decay Pathways of Photoexcited States in CdSe and CdSe/CdS Nanoplatelets. Nano Letters, 2014, 14, 7039-7045.	4.5	122
49	High charge carrier mobility and efficient charge separation in highly soluble perylenetetracarboxyl-diimides. Chemical Communications, 2014, 50, 4955-4958.	2.2	9
50	Electrochemical Control over Photoinduced Electron Transfer and Trapping in CdSe-CdTe Quantum-Dot Solids. ACS Nano, 2014, 8, 7067-7077.	7.3	42
51	Bimolecular Auger Recombination of Electron–Hole Pairs in Two-Dimensional CdSe and CdSe/CdZnS Core/Shell Nanoplatelets. Journal of Physical Chemistry Letters, 2013, 4, 3574-3578.	2.1	146
52	Signatures of Quantum Interference Effects on Charge Transport Through a Single Benzene Ring. Angewandte Chemie - International Edition, 2013, 52, 3152-3155.	7.2	204
53	Cooling and Auger Recombination of Charges in PbSe Nanorods: Crossover from Cubic to Bimolecular Decay. Nano Letters, 2013, 13, 4380-4386.	4.5	26
54	Efficient Charge Transport in Semisynthetic Zinc Chlorin Dye Assemblies. Journal of the American Chemical Society, 2012, 134, 16147-16150.	6.6	47

#	Article	IF	CITATIONS
55	Effects of the Environment on Charge Transport in Molecular Wires. Journal of Physical Chemistry C, 2012, 116, 25213-25225.	1.5	17
56	Effect of Structural Dynamics and Base Pair Sequence on the Nature of Excited States in DNA Hairpins. Journal of Physical Chemistry B, 2012, 116, 11447-11458.	1.2	22
57	Biosupramolecular Nanowires from Chlorophyll Dyes with Exceptional Chargeâ€Transport Properties. Angewandte Chemie - International Edition, 2012, 51, 6378-6382.	7.2	88
58	Single molecule charge transport: from a quantum mechanical to a classical description. Physical Chemistry Chemical Physics, 2011, 13, 2096-2110.	1.3	21
59	Delocalization and Mobility of Charge Carriers in Covalent Organic Frameworks. Journal of Physical Chemistry C, 2011, 115, 11768-11772.	1.5	73
60	Charge Mobilities in Conjugated Polymers Measured by Pulse Radiolysis Time-Resolved Microwave Conductivity: From Single Chains to Solids. Journal of Physical Chemistry Letters, 2011, 2, 2951-2958.	2.1	69
61	Chemically Gated Quantum-Interference-Based Molecular Transistor. Journal of Physical Chemistry Letters, 2011, 2, 1753-1756.	2.1	35
62	Columnar Mesophases Based on Zinc Chlorophyll Derivatives Functionalized with Peripheral Dendron Wedges. Chemistry - A European Journal, 2011, 17, 5300-5310.	1.7	19
63	Simulation of Hopping Transport Based on Charge Carrier Localization Times Derived for a Two-Level System. Journal of Physical Chemistry C, 2010, 114, 20424-20430.	1.5	11
64	Temperatureâ€Resolved Local and Macroscopic Charge Carrier Transport in Thin P3HT Layers. Advanced Functional Materials, 2010, 20, 2286-2295.	7.8	131
65	Self-assembly and semiconductivity of an oligothiophene supergelator. Beilstein Journal of Organic Chemistry, 2010, 6, 1070-1078.	1.3	40
66	Charge Transfer Through Molecules with Multiple Pathways: Quantum Interference and Dephasing. Journal of Physical Chemistry C, 2010, 114, 7973-7979.	1.5	25
67	Quasi Temperature Independent Electron Mobility in Hexagonal Columnar Mesophases of an H-Bonded Benzotristhiophene Derivative. Chemistry of Materials, 2010, 22, 1420-1428.	3.2	72
68	Theoretical Study of the Optical Properties of Artificial Self-Assembled Zinc Chlorins. Journal of Physical Chemistry C, 2010, 114, 20834-20842.	1.5	24
69	Effect of Electrostatic Interactions and Dynamic Disorder on the Distance Dependence of Charge Transfer in Donorâ^'Bridgeâ^'Acceptor Systems. Journal of Physical Chemistry B, 2010, 114, 14564-14571.	1.2	22
70	Towards high charge-carrier mobilities by rational design of the shape and periphery of discotics. Nature Materials, 2009, 8, 421-426.	13.3	555
71	Radical Cations of All- <i>Trans</i> Oligodiacetylenes: Optical Absorption and Reactivity toward Nucleophiles. Journal of Physical Chemistry B, 2009, 113, 11095-11100.	1.2	2
72	Mechanism of Charge Transport along Zinc Porphyrin-Based Molecular Wires. Journal of the American Chemical Society, 2009, 131, 5522-5529.	6.6	59

#	Article	IF	CITATIONS
73	Effect of GC Base Pairs on Charge Transfer through DNA Hairpins: The Importance of Electrostatic Interactions. Journal of the American Chemical Society, 2009, 131, 14204-14205.	6.6	36
74	Columnar Mesophases with 3D Order from New Functional Nonconventional Starâ€6haped Mesogens. Advanced Materials, 2008, 20, 4414-4418.	11.1	49
75	Charge Transfer in Donor-Bridge-Acceptor Systems: Static Disorder, Dynamic Fluctuations, and Complex Kinetics. Journal of Physical Chemistry C, 2008, 112, 10988-11000.	1.5	114
76	Mechanism of charge transport in self-organizing organic materials. International Reviews in Physical Chemistry, 2008, 27, 87-138.	0.9	194
77	Hydrogen-bond stabilized columnar discotic benzenetrisamides with pendant triphenylene groups. Journal of Materials Chemistry, 2008, 18, 5475.	6.7	64
78	Effect of Structural Dynamics on Charge Transfer in DNA Hairpins. Journal of the American Chemical Society, 2008, 130, 5157-5166.	6.6	148
79	Supramolecular Control of Charge Transport in Molecular Wires. Journal of the American Chemical Society, 2007, 129, 13370-13371.	6.6	94
80	Optical and Conductive Properties of Large-Area Liquid Crystalline Monodomains of Terthiophene Derivatives. Journal of Physical Chemistry C, 2007, 111, 18411-18416.	1.5	13
81	Organic Field-Effect Transistors Utilizing Solution-Deposited Oligothiophene-Based Swivel Cruciforms. Chemistry of Materials, 2007, 19, 1267-1276.	3.2	30
82	Opto-Electronic Properties of Fluorene-Based Derivatives as Precursors for Light-Emitting Diodes. Journal of Physical Chemistry C, 2007, 111, 5812-5820.	1.5	23
83	Charge Transport along Coiled Conjugated Polymer Chains. Journal of Physical Chemistry C, 2007, 111, 11104-11112.	1.5	39
84	Mechanism and Absolute Rates of Charge Transfer Through DNA. Nanoscience and Technology, 2007, , 21-43.	1.5	0
85	Efficient Charge Transport along Phenyleneâ^'Vinylene Molecular Wires. Journal of Physical Chemistry B, 2006, 110, 14659-14666.	1.2	57
86	Effect of intermolecular disorder on the intrachain charge transport in ladder-type poly(p-phenylenes). Physical Review B, 2006, 73, .	1.1	47
87	H-Bond-Stabilized Triphenylene-Based Columnar Discotic Liquid Crystals. Chemistry of Materials, 2006, 18, 968-974.	3.2	141
88	Electronic Structure and Optical Properties of Charged Oligofluorenes Studied by VIS/NIR Spectroscopy and Time-Dependent Density Functional Theory. Journal of Physical Chemistry B, 2006, 110, 5984-5993.	1.2	40
89	Two-Dimensional Charge Delocalization in X-Shaped Phenylenevinylene Oligomers. Chemistry of Materials, 2006, 18, 2118-2129.	3.2	23
90	Frequency dependent mobility of charge carriers along polymer chains with finite length. Physica Status Solidi (B): Basic Research, 2006, 243, 382-386.	0.7	45

#	Article	IF	CITATIONS
91	Enhanced charge-carrier mobility inβ-phase polyfluorene. Physical Review B, 2006, 74, .	1.1	55
92	High Intrachain Hole Mobility on Molecular Wires of Ladder-Type Poly(p-Phenylenes). Physical Review Letters, 2006, 96, 146601.	2.9	181
93	Charge transport along phenylenevinylene molecular wires. Molecular Simulation, 2006, 32, 695-705.	0.9	13
94	Absolute Rates of Hole Transfer in DNA. Journal of the American Chemical Society, 2005, 127, 14894-14903.	6.6	325
95	Dynamics and Lithium Binding Energies of Polyelectrolytes Based on Functionalized Poly(para-phenylene terephthalamide). Journal of Physical Chemistry B, 2005, 109, 7705-7712.	1.2	6
96	Optical Properties and Delocalization of Excess Negative Charges on Oligo(Phenylenevinylene)s:Â A Quantum Chemical Study. Journal of Physical Chemistry B, 2005, 109, 5644-5652.	1.2	21
97	QM/MM Study of the Role of the Solvent in the Formation of the Charge Separated Excited State in 9,9â€~Bianthryl. Journal of the American Chemical Society, 2005, 127, 11019-11028.	6.6	62
98	Impact of the Computational Method on the Geometric and Electronic Properties of Oligo(phenylene) Tj ETQqO	0 0 rgBT /0 1.2	Dvgrlock 10 T
99	Charge Transport in Self-Organized ï€-Stacks ofp-Phenylene Vinylene Oligomers. Journal of Physical Chemistry B, 2005, 109, 18267-18274.	1.2	90
100	Electronic Structure of Thienylene Vinylene Oligomers:Â Singlet Excited States, Triplet Excited States, Cations, and Dications. Journal of Physical Chemistry B, 2004, 108, 16139-16146.	1.2	38
101	VIS/NIR Absorption Spectra of Positively Charged Oligo(phenylenevinylene)s and Comparison with Time-Dependent Density Functional Theory Calculations. Journal of Physical Chemistry B, 2004, 108, 19967-19975.	1.2	13
102	Charge transport in columnar stacked triphenylenes: Effects of conformational fluctuations on charge transfer integrals and site energies. Journal of Chemical Physics, 2003, 119, 9809-9817.	1.2	395
103	Mapping the Sites for Selective Oxidation of Guanines in DNA. Journal of the American Chemical Society, 2003, 125, 13658-13659.	6.6	97
104	Positive Charge Carriers on Isolated Chains of MEHâ^'PPV with Broken Conjugation:  Optical Absorption and Mobility. Journal of Physical Chemistry B, 2003, 107, 1554-1558.	1.2	36
105	The Formation and Recombination Kinetics of Positively Charged Poly(phenylene vinylene) Chains in Pulse-Irradiated Dilute Solutions. Journal of Physical Chemistry A, 2003, 107, 5976-5986.	1.1	61
106	Tuning of the excited state properties of phenylenevinylene oligomers: A time-dependent density functional theory study. Journal of Chemical Physics, 2003, 118, 9441-9446.	1.2	19
107	Theoretical and experimental studies of the opto-electronic properties of positively charged oligo(phenylene vinylene)s: Effects of chain length and alkoxy substitution. Journal of Chemical Physics, 2002, 117, 11366-11378.	1.2	65
108	Intramolecular Charge Transport along Isolated Chains of Conjugated Polymers:  Effect of Torsional Disorder and Polymerization Defects. Journal of Physical Chemistry B, 2002, 106, 7791-7795.	1.2	186

#	Article	IF	CITATIONS
109	Hole Conduction along Molecular Wires: σ-Bonded Silicon Versus π-Bond-Conjugated Carbon. Advanced Materials, 2002, 14, 228-231.	11.1	167
110	Hole Mobility in DNA: Effects of Static and Dynamic Structural Fluctuations. ChemPhysChem, 2002, 3, 536.	1.0	112
111	INS as a probe of inter-monomer angles in polymers. Applied Physics A: Materials Science and Processing, 2002, 74, s496-s498.	1.1	2
112	Frequency dependence of the charge carrier mobility in DH4T. Synthetic Metals, 2001, 119, 463-464.	2.1	6
113	Charge carrier dynamics in bulk poly(3-hexylthiophene) as a function of temperature. Synthetic Metals, 2001, 119, 431-432.	2.1	13
114	Solvent Induced Charge Separation in the Excited States of Symmetrical Ethylene:Â A Direct Reaction Field Study. Journal of Physical Chemistry A, 2001, 105, 3583-3590.	1.1	15
115	Electrodeless Measurement of the In-Plane Anisotropy in the Photoconductivity of an Aligned Polyfluorene Film. Advanced Materials, 2001, 13, 1627-1630.	11.1	35
116	Excited state polarizabilities of conjugated molecules calculated using time dependent density functional theory. Journal of Chemical Physics, 2001, 115, 10014-10021.	1.2	94
117	Mechanism of Charge Migration through DNA:Â Molecular Wire Behavior, Single-Step Tunneling or Hopping?. Journal of the American Chemical Society, 2000, 122, 10903-10909.	6.6	211
118	Solvent Effects on the π* ↕n Transition of Acetone in Various Solvents:  Direct Reaction Field Calculations. Journal of Physical Chemistry A, 1998, 102, 7984-7989.	1.1	61