Graeme Moad

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4490631/publications.pdf

Version: 2024-02-01

242 papers 32,061 citations

9756 73 h-index 175 g-index

287 all docs

287 docs citations

times ranked

287

11808 citing authors

#	Article	IF	CITATIONS
1	Living Free-Radical Polymerization by Reversible Additionâ^'Fragmentation Chain Transfer:Â The RAFT Process. Macromolecules, 1998, 31, 5559-5562.	2.2	4,672
2	Living Radical Polymerization by the RAFT Process. Australian Journal of Chemistry, 2005, 58, 379.	0.5	2,116
3	Radical addition–fragmentation chemistry in polymer synthesis. Polymer, 2008, 49, 1079-1131.	1.8	1,296
4	Living Radical Polymerization by the RAFT Process – A Third Update. Australian Journal of Chemistry, 2012, 65, 985.	0.5	920
5	Living Radical Polymerization by the RAFT Process - A Second Update. Australian Journal of Chemistry, 2009, 62, 1402.	0.5	874
6	Living Radical Polymerization by the RAFT Process—A First Update. Australian Journal of Chemistry, 2006, 59, 669.	0.5	826
7	A More Versatile Route to Block Copolymers and Other Polymers of Complex Architecture by Living Radical Polymerization:Â The RAFT Process. Macromolecules, 1999, 32, 2071-2074.	2.2	820
8	Living free radical polymerization with reversible addition - fragmentation chain transfer (the life of) Tj ETQq0 0 C	rgBT/Ov	erlock 10 Tf 50
9	Thiocarbonylthio Compounds [SC(Ph)Sâ^'R] in Free Radical Polymerization with Reversible Addition-Fragmentation Chain Transfer (RAFT Polymerization). Role of the Free-Radical Leaving Group (R). Macromolecules, 2003, 36, 2256-2272.	2.2	758
10	Advances in RAFT polymerization: the synthesis of polymers with defined end-groups. Polymer, 2005, 46, 8458-8468.	1.8	735
11	Toward Living Radical Polymerization. Accounts of Chemical Research, 2008, 41, 1133-1142.	7.6	675
12	Definitions of terms relating to the structure and processing of sols, gels, networks, and inorganic-organic hybrid materials (IUPAC Recommendations 2007). Pure and Applied Chemistry, 2007, 79, 1801-1829.	0.9	643
13	Thiocarbonylthio Compounds (SC(Z)Sâ^'R) in Free Radical Polymerization with Reversible Addition-Fragmentation Chain Transfer (RAFT Polymerization). Effect of the Activating Group Z. Macromolecules, 2003, 36, 2273-2283.	2.2	587
14	Reversible-deactivation radical polymerization (Controlled/living radical polymerization): From discovery to materials design and applications. Progress in Polymer Science, 2020, 111, 101311.	11.8	555
15	Living Radical Polymerization with Reversible Additionâ^'Fragmentation Chain Transfer (RAFT) Tj ETQq1 1 0.7843	14 rgBT / 2.2	Overlock 10 To 519
16	The synthesis of polyolefin graft copolymers by reactive extrusion. Progress in Polymer Science, 1999, 24, 81-142.	11.8	514
17	RAFT Agent Design and Synthesis. Macromolecules, 2012, 45, 5321-5342.	2.2	505
18	Terminology for reversible-deactivation radical polymerization previously called "controlled" radical or "living" radical polymerization (IUPAC Recommendations 2010). Pure and Applied Chemistry, 2009, 82, 483-491.	0.9	480

#	Article	IF	CITATIONS
19	Living Polymers by the Use of Trithiocarbonates as Reversible Additionâ^Fragmentation Chain Transfer (RAFT) Agents:Â ABA Triblock Copolymers by Radical Polymerization in Two Steps. Macromolecules, 2000, 33, 243-245.	2,2	446
20	A novel synthesis of functional dithioesters, dithiocarbamates, xanthates and trithiocarbonates. Tetrahedron Letters, 1999, 40, 2435-2438.	0.7	441
21	Mechanism and kinetics of dithiobenzoate-mediated RAFT polymerization. I. The current situation. Journal of Polymer Science Part A, 2006, 44, 5809-5831.	2.5	429
22	Alkoxyamine-Initiated Living Radical Polymerization: Factors Affecting Alkoxyamine Homolysis Rates. Macromolecules, 1995, 28, 8722-8728.	2.2	325
23	Mechanism and Kinetics of RAFT-Based Living Radical Polymerizations of Styrene and Methyl Methacrylate. Macromolecules, 2001, 34, 402-408.	2.2	313
24	Living Free Radical Polymerization with Reversible Additionâ^'Fragmentation Chain Transfer (RAFT) Tj ETQq0 0	0 rgBT /Ove 2:2	rlogk 10 Tf 50
25	RAFT polymerization to form stimuli-responsive polymers. Polymer Chemistry, 2017, 8, 177-219.	1.9	278
26	RAFT Polymerization and Some of its Applications. Chemistry - an Asian Journal, 2013, 8, 1634-1644.	1.7	276
27	Endâ€functional polymers, thiocarbonylthio group removal/transformation and reversible addition–fragmentation–chain transfer (RAFT) polymerization. Polymer International, 2011, 60, 9-25.	1.6	275
28	Universal (Switchable) RAFT Agents. Journal of the American Chemical Society, 2009, 131, 6914-6915.	6.6	271
29	Definitions of terms relating to reactions of polymers and to functional polymeric materials (IUPAC) Tj ETQq1 1	0.784314	rgBT (Overlo
30	Selectivity of the reaction of free radicals with styrene. Macromolecules, 1982, 15, 909-914.	2.2	223
31	Thiocarbonylthio End Group Removal from RAFT-Synthesized Polymers by Radical-Induced Reduction. Macromolecules, 2007, 40, 4446-4455.	2.2	221
32	Chemical modification of starch by reactive extrusion. Progress in Polymer Science, 2011, 36, 218-237.	11.8	215
33	Narrow Polydispersity Block Copolymers by Free-Radical Polymerization in the Presence of Macromonomers. Macromolecules, 1995, 28, 5381-5385.	2.2	203
34	Consistent values of rate parameters in free radical polymerization systems. II. Outstanding dilemmas and recommendations. Journal of Polymer Science Part A, 1992, 30, 851-863.	2.5	199
35	RAFT Polymerization with Phthalimidomethyl Trithiocarbonates or Xanthates. On the Origin of Bimodal Molecular Weight Distributions in Living Radical Polymerization. Macromolecules, 2006, 39, 5307-5318.	2.2	197
36	Synthesis of Defined Polymers by Reversible Addition—Fragmentation Chain Transfer: The RAFT Process. ACS Symposium Series, 2000, , 278-296.	0.5	175

#	Article	lF	Citations
37	Living Radical Polymerization with Reversible Additionâ 'Fragmentation Chain Transfer (RAFT):Â Direct ESR Observation of Intermediate Radicals. Macromolecules, 1999, 32, 5457-5459.	2.2	174
38	Kinetics of the coupling reactions of the nitroxyl radical 1,1,3,3-tetramethylisoindoline-2-oxyl with carbon-centered radicals. Journal of Organic Chemistry, 1988, 53, 1632-1641.	1.7	165
39	Synthesis of Discrete Oligomers by Sequential PETâ€RAFT Singleâ€Unit Monomer Insertion. Angewandte Chemie - International Edition, 2017, 56, 8376-8383.	7.2	165
40	Chain Transfer to Polymer:Â A Convenient Route to Macromonomers. Macromolecules, 1999, 32, 7700-7702.	2.2	163
41	Synthesis of Well-Defined Polystyrene with Primary Amine End Groups through the Use of Phthalimido-Functional RAFT Agents. Macromolecules, 2006, 39, 5293-5306.	2.2	153
42	Functional polymers for optoelectronic applications by RAFT polymerization. Polymer Chemistry, 2011, 2, 492-519.	1.9	153
43	Synthesis of novel architectures by radical polymerization with reversible addition fragmentation chain transfer (RAFT polymerization). Macromolecular Symposia, 2003, 192, 1-12.	0.4	147
44	Thermolysis of RAFT-Synthesized Polymers. A Convenient Method for Trithiocarbonate Group Elimination. Macromolecules, 2005, 38, 5371-5374.	2.2	143
45	Chain Transfer Activity of ï‰-Unsaturated Methyl Methacrylate Oligomers. Macromolecules, 1996, 29, 7717-7726.	2.2	140
46	Tailored polymers by free radical processes. Macromolecular Symposia, 1999, 143, 291-307.	0.4	136
47	Consistent values of rate parameters in free radical polymerization systems. Journal of Polymer Science, Polymer Letters Edition, 1988, 26, 293-297.	0.4	132
48	Mechanism and Kinetics of Dithiobenzoateâ€Mediated RAFT Polymerization – Status of the Dilemma. Macromolecular Chemistry and Physics, 2014, 215, 9-26.	1.1	126
49	Controlled RAFT Polymerization in a Continuous Flow Microreactor. Organic Process Research and Development, 2011, 15, 593-601.	1.3	123
50	The scope for synthesis of macro-RAFT agents by sequential insertion of single monomer units. Polymer Chemistry, 2012, 3, 1879.	1.9	122
51	Synthesis of the radical scavenger $1,1,3,3$ -Tetramethylisoindolin-2-yloxyl. Australian Journal of Chemistry, $1983,36,397$.	0.5	117
52	Thermolysis of RAFT-Synthesized Poly(Methyl Methacrylate). Australian Journal of Chemistry, 2006, 59, 755.	0.5	117
53	Title is missing!. Die Makromolekulare Chemie, 1993, 194, 1691-1705.	1.1	112
54	Discrete and Stereospecific Oligomers Prepared by Sequential and Alternating Single Unit Monomer Insertion. Journal of the American Chemical Society, 2018, 140, 13392-13406.	6.6	110

#	Article	IF	CITATIONS
55	Polystyrene-block-poly(vinyl acetate) through the Use of a Switchable RAFT Agent. Macromolecules, 2009, 42, 9384-9386.	2.2	109
56	Switchable Reversible Addition–Fragmentation Chain Transfer (RAFT) Polymerization in Aqueous Solution, <i>N</i> , <i>N</i> -Dimethylacrylamide. Macromolecules, 2011, 44, 6738-6745.	2.2	105
57	Thiocarbonylthio end group removal from RAFTâ€synthesized polymers by a radicalâ€induced process. Journal of Polymer Science Part A, 2009, 47, 6704-6714.	2.5	103
58	Fate of the initiator in the azobisisobutyronitrile-initiated polymerization of styrene. Macromolecules, 1984, 17, 1094-1099.	2.2	97
59	The Application of Supercomputers in Modeling Chemical Reaction Kinetics: Kinetic Simulation of 'Quasi-Living' Radical Polymerization. Australian Journal of Chemistry, 1990, 43, 1215.	0.5	97
60	Living polymerization: Rationale for uniform terminology. , 2000, 38, 1706-1708.		97
61	Structure of benzoyl peroxide initiated polystyrene: determination of the initiator-derived functionality by carbon-13 NMR. Macromolecules, 1982, 15, 1188-1191.	2.2	96
62	RAFT (Reversible addition-fragmentation chain transfer) crosslinking (co)polymerization of multi-olefinic monomers to form polymer networks. Polymer International, 2015, 64, 15-24.	1.6	93
63	Intramolecular addition in hex-5-enyl, hept-6-enyl, and oct-7-enyl radicals. Journal of the Chemical Society Chemical Communications, 1974, , 472.	2.0	86
64	Imidazolidinone Nitroxide-Mediated Polymerization. Macromolecules, 1999, 32, 6895-6903.	2.2	85
65	Title is missing!. Die Makromolekulare Chemie Rapid Communications, 1984, 5, 793-798.	1.1	84
66	New Free-Radical Ring-Opening Acrylate Monomers. Macromolecules, 1994, 27, 7935-7937.	2.2	84
67	A new form of controlled growth free radical polymerization. Macromolecular Symposia, 1996, 111, 13-23.	0.4	82
68	Tailored polymer architectures by reversible addition-frasmentation chain transfer. Macromolecular Symposia, 2001, 174, 209-212.	0.4	82
69	A product study of the nitroxide inhibited thermal polymerization of styrene. Polymer Bulletin, 1982, 6, 589.	1.7	81
70	Chain Transfer Kinetics of Acid/Base Switchable <i>N</i> -Aryl- <i>N</i> -Pyridyl Dithiocarbamate RAFT Agents in Methyl Acrylate, <i>N</i> -Vinylcarbazole and Vinyl Acetate Polymerization. Macromolecules, 2012, 45, 4205-4215.	2.2	81
71	RAFT Polymerization: Adding to the Picture. Macromolecular Symposia, 2007, 248, 104-116.	0.4	79
72	The kinetics and mechanism of ring opening of radicals containing the cyclobutylcarbinyl system. Journal of the Chemical Society Perkin Transactions II, 1980, , 1083.	0.9	77

#	Article	IF	Citations
73	Use of Chain Length Distributions in Determining Chain Transfer Constants and Termination Mechanisms. Macromolecules, 1996, 29, 7727-7733.	2.2	77
74	Initiating free radical polymerization. Macromolecular Symposia, 2002, 182, 65-80.	0.4	77
7 5	Controlled-Growth Free-Radical Polymerization of Methacrylate Esters: Reversible Chain Transfer versus Reversible Termination. ACS Symposium Series, 1998, , 332-360.	0.5	76
76	Glossary of terms related to kinetics, thermodynamics, and mechanisms of polymerization (IUPAC) Tj ETQq0 0 0	rgBT/Ove	erlock 10 Tf 50 76
77	Absolute rate constants for radical-monomer reactions. Polymer Bulletin, 1992, 29, 647-652.	1.7	74
78	One pot synthesis of higher order quasi-block copolymer libraries <i>via </i> polymerization in an automated synthesizer. Polymer Chemistry, 2014, 5, 5236-5246.	1.9	72
79	A Critical Assessment of the Kinetics and Mechanism of Initiation of Radical Polymerization with Commercially Available Dialkyldiazene Initiators. Progress in Polymer Science, 2019, 88, 130-188.	11.8	70
80	RAFT-mediated, visible light-initiated single unit monomer insertion and its application in the synthesis of sequence-defined polymers. Polymer Chemistry, 2017, 8, 4637-4643.	1.9	69
81	The philicity of tert-butoxy radicals. What factors are important in determining the rate and regiospecificity of tert-butoxy radical addition to olefins?. Journal of Organic Chemistry, 1989, 54, 1607-1611.	1.7	67
82	Exploitation of the Nanoreactor Concept for Efficient Synthesis of Multiblock Copolymers via MacroRAFT-Mediated Emulsion Polymerization. ACS Macro Letters, 2019, 8, 989-995.	2.3	67
83	The Emergence of RAFT Polymerization. Australian Journal of Chemistry, 2006, 59, 661.	0.5	62
84	The reaction of acyl peroxides with 2,2,6,6-tetramethylpiperidinyl-1-oxy. Tetrahedron Letters, 1981, 22, 1165-1168.	0.7	60
85	Tacticity of Poly(Methyl Methacrylate). Evidence for a Penpenultimate Group Effect in Free-Radical Polymerization. Australian Journal of Chemistry, 1986, 39, 43.	0.5	58
86	Kinetics and Mechanism of RAFT Polymerization. ACS Symposium Series, 2003, , 520-535.	0.5	58
87	A Critical Survey of Dithiocarbamate Reversible Additionâ€Fragmentation Chain Transfer (RAFT) Agents in Radical Polymerization. Journal of Polymer Science Part A, 2019, 57, 216-227.	2.5	58
88	Reversible addition-fragmentation chain transfer (co)polymerization of conjugated diene monomers: butadiene, isoprene and chloroprene. Polymer International, 2017, 66, 26-41.	1.6	57
89	High-Throughput Process for the Discovery of Antimicrobial Polymers and Their Upscaled Production via Flow Polymerization. Macromolecules, 2020, 53, 631-639.	2.2	55
90	Multiarm organic compounds for use as reversible chain-transfer agents in living radical polymerizations. Tetrahedron Letters, 2002, 43, 6811-6814.	0.7	54

#	Article	IF	Citations
91	Nano-Engineered Multiblock Copolymer Nanoparticles via Reversible Addition–Fragmentation Chain Transfer Emulsion Polymerization. Macromolecules, 2019, 52, 2965-2974.	2.2	54
92	Living Radical Polymerization., 2005,, 451-585.		53
93	Rheological properties of high melt strength poly(ethylene terephthalate) formed by reactive extrusion. Journal of Applied Polymer Science, 2006, 100, 3646-3652.	1.3	52
94	Enhancement of MHC-I Antigen Presentation via Architectural Control of pH-Responsive, Endosomolytic Polymer Nanoparticles. AAPS Journal, 2015, 17, 358-369.	2.2	52
95	Reversible Addition Fragmentation Chain Transfer Polymerization of Methyl Methacrylate in the Presence of Lewis Acids:  An Approach to Stereocontrolled Living Radical Polymerization. Macromolecules, 2007, 40, 9262-9271.	2.2	51
96	Porous, functional, poly(styrene-co-divinylbenzene) monoliths by RAFT polymerization. Polymer Chemistry, 2014, 5, 722-732.	1.9	50
97	A brief guide to polymer nomenclature (IUPAC Technical Report). Pure and Applied Chemistry, 2012, 84, 2167-2169.	0.9	48
98	Dithiocarbamate RAFT agents with broad applicability $\hat{a} \in$ the 3,5-dimethyl-1H-pyrazole-1-carbodithioates. Polymer Chemistry, 2016, 7, 481-492.	1.9	48
99	An Armâ€First Approach to Cleavable Miktoâ€Arm Star Polymers by RAFT Polymerization. Macromolecular Rapid Communications, 2014, 35, 840-845.	2.0	47
100	Studies on 6-methyl-5-deazatetrahydropterin and its 4a adducts. Journal of the American Chemical Society, 1979, 101, 6068-6076.	6.6	46
101	On the regioselectivity of free radical processes; reactions of benzoyloxy, phenyl and t-butoxy radicals with some $\hat{l}\pm,\hat{l}^2$ -unsaturated esters. Australian Journal of Chemistry, 1983, 36, 1573.	0.5	45
102	Compatibilisation of polystyrene-polyolefin blends. Polymer Bulletin, 1994, 32, 479-485.	1.7	45
103	Rapid and Systematic Access to Quasiâ€Diblock Copolymer Libraries Covering a Comprehensive Composition Range by Sequential RAFT Polymerization in an Automated Synthesizer. Macromolecular Rapid Communications, 2014, 35, 492-497.	2.0	45
104	A Comprehensive Platform for the Design and Synthesis of Polymer Molecular Weight Distributions. Macromolecules, 2020, 53, 8867-8882.	2.2	45
105	Measurements of Primary Radical Concentrations Generated by Pulsed Laser Photolysis Using Fluorescence Detection. Journal of Physical Chemistry A, 1999, 103, 6580-6586.	1.1	44
106	Chain Transfer Activity of I‰-Unsaturated Methacrylic Oligomers in Polymerizations of Methacrylic Monomers. Macromolecules, 2004, 37, 4441-4452.	2.2	44
107	Block copolymers containing organic semiconductor segments by RAFT polymerization. Organic and Biomolecular Chemistry, 2011, 9, 6111.	1.5	44
108	Advances in Switchable RAFT Polymerization. Macromolecular Symposia, 2015, 350, 34-42.	0.4	44

#	Article	IF	CITATIONS
109	RAFT Polymerization – Then and Now. ACS Symposium Series, 2015, , 211-246.	0.5	43
110	Lightâ€Induced RAFT Single Unit Monomer Insertion in Aqueous Solutionâ€"Toward Sequenceâ€Controlled Polymers. Macromolecular Rapid Communications, 2018, 39, e1800240.	2.0	43
111	The Mechanism and Kinetics of the RAFT Process: Overview, Rates, Stabilities, Side Reactions, Product Spectrum and Outstanding Challenges., 0,, 51-104.		42
112	Ring-opening of some radicals containing the cyclopropylmethyl system. Journal of the Chemical Society Perkin Transactions II, 1980, , 1473.	0.9	41
113	A simple method for determining protic end-groups of synthetic polymers by 1H NMR spectroscopy. Polymer, 2006, 47, 1899-1911.	1.8	41
114	The reactivity of N-vinylcarbazole in RAFT polymerization: trithiocarbonates deliver optimal control for the synthesis of homopolymers and block copolymers. Polymer Chemistry, 2013, 4, 3591.	1.9	41
115	The Reaction of Benzoyloxy Radicals with Styreneâ€"Implications Concerning the Structure of Polystyrene. Journal of Macromolecular Science Part A, Chemistry, 1982, 17, 51-59.	0.4	40
116	New Features of the Mechanism of RAFT Polymerization. ACS Symposium Series, 2009, , 3-18.	0.5	39
117	End groups of poly(methyl methacrylate-co-styrene) prepared with tert-butoxy, methyl, and/or phenyl radical initiation: effects of solvent, monomer composition, and conversion. Macromolecules, 1988, 21, 1522-1528.	2.2	38
118	Characterization of poly(ethylene terephthalate) and poly(ethylene terephthalate) blends. Polymer, 1997, 38, 3035-3043.	1.8	37
119	Synthesis of Discrete Oligomers by Sequential PETâ€RAFT Singleâ€Unit Monomer Insertion. Angewandte Chemie, 2017, 129, 8496-8503.	1.6	36
120	RAFT Emulsion Polymerization for (Multi)block Copolymer Synthesis: Overcoming the Constraints of Monomer Order. Macromolecules, 2021, 54, 736-746.	2.2	36
121	Reactions of benzoyloxyl radicals with some common vinyl monomers. Die Makromolekulare Chemie Rapid Communications, 1982, 3, 533-536.	1.1	35
122	Solvent effects on the reaction of t-butoxy radicals with methyl methacrylate. Australian Journal of Chemistry, 1983, 36, 2447.	0.5	35
123	Influences of the initiation and termination reactions on the molecular weight distribution and compositional heterogeneity of functional copolymers: an application of Monte Carlo simulation. Macromolecules, 1987, 20, 675-679.	2.2	35
124	Thermal stability of poly(methyl methacrylate). Polymer Bulletin, 1988, 20, 499-503.	1.7	35
125	Further studies on the thermal decomposition of AIBNâ€"implications concerning the mechanism of termination in methacrylonitrile polymerization. European Polymer Journal, 1993, 29, 379-388.	2.6	35
126	Invited Review. Understanding and Controlling Radical Polymerization. Australian Journal of Chemistry, 1990, 43, 215.	0.5	35

#	Article	IF	CITATIONS
127	Morphology-property relationships in ABS/PET blends. I. Compositional effects. , 1996, 62, 1699-1708.		34
128	Approaches to phthalimido and amino end-functional polystyrene by atom transfer radical polymerisation (ATRP). Reactive and Functional Polymers, 2006, 66, 137-147.	2.0	34
129	RAFT Polymerization: Materials of The Future, Science of Today: Radical Polymerization - The Next Stage. Australian Journal of Chemistry, 2009, 62, 1379.	0.5	34
130	Nonmigratory Poly(vinyl chloride)-block-polycaprolactone Plasticizers and Compatibilizers Prepared by Sequential RAFT and Ring-Opening Polymerization (RAFT-Tlµ-ROP). Macromolecules, 2019, 52, 1746-1756.	2,2	34
131	"Weak links―in polystyrene—thermal degradation of polymers prepared with AIBN or benzoyl peroxide as initiator. European Polymer Journal, 1989, 25, 767-777.	2.6	33
132	A 20th anniversary perspective on the life of RAFT (RAFT coming of age). Polymer International, 2020, 69, 658-661.	1.6	33
133	Binary Copolymerization with Catalytic Chain Transfer. A Method for Synthesizing Macromonomers Based on Monosubstituted Monomers. Macromolecules, 2005, 38, 9037-9054.	2.2	32
134	Novel Copolymers as Dispersants/Intercalants/Exfoliants for Polypropylene-Clay Nanocomposites. Macromolecular Symposia, 2006, 233, 170-179.	0.4	32
135	The effect of Z-group modification on the RAFT polymerization of N-vinylpyrrolidone controlled by "switchable―N-pyridyl-functional dithiocarbamates. Polymer Chemistry, 2015, 6, 7119-7126.	1.9	32
136	Divergent Synthesis of Graft and Branched Copolymers through Spatially Controlled Photopolymerization in Flow Reactors. Macromolecules, 2021, 54, 3430-3446.	2.2	32
137	Evaluation of propagation rate constants for the free radical polymerization of methacrylonitrile by pulsed laser photolysis. Macromolecular Rapid Communications, 1995, 16, 837-844.	2.0	31
138	A novel method for determination of polyester end-groups by NMR spectroscopy. Polymer, 2005, 46, 5005-5011.	1.8	31
139	Exploitation of Compartmentalization in RAFT Miniemulsion Polymerization to Increase the Degree of Livingness. Journal of Polymer Science Part A, 2019, 57, 1938-1946.	2.5	31
140	How powerful are composition data in discriminating between the terminal and penultimate models for binary copolymerization?. Macromolecules, 1989, 22, 1145-1147.	2.2	29
141	Electrochemical Behavior of Thiocarbonylthio Chain Transfer Agents for RAFT Polymerization. ACS Macro Letters, 2019, 8, 1316-1322.	2.3	29
142	Low-Dispersity Polymers in <i>Ab Initio</i> Emulsion Polymerization: Improved MacroRAFT Agent Performance in Heterogeneous Media. Macromolecules, 2020, 53, 7672-7683.	2.2	29
143	Polymerization-induced self-assembly via RAFT in emulsion: effect of Z-group on the nucleation step. Polymer Chemistry, 2021, 12, 122-133.	1.9	29
144	13C-1H heteronuclear chemical shift correlation spectroscopy applied to poly(methyl) Tj ETQq0 0 0 rgBT /Overlo sequences. Macromolecules, 1986, 19, 2494-2497.	ck 10 Tf 5 2.2	0 67 Td ([cart 28

sequences. Macromolecules, 1986, 19, 2494-2497.

#	Article	IF	Citations
145	4-Halogeno-3,5-dimethyl- $1 < i > H < / i > -$ pyrazole- 1 -carbodithioates: versatile reversible addition fragmentation chain transfer agents with broad applicability. Polymer International, 2017, 66, 1438-1447.	1.6	28
146	Cyclization of 3-allylhex-5-enyl radical: mechanism, and implications concerning the structures of cyclopolymers. Journal of the Chemical Society Perkin Transactions II, 1975, , 1726.	0.9	27
147	Kinetic data for coupling of primary alkyl radicals with a stable nitroxide. Journal of the Chemical Society Chemical Communications, 1986, , 1003.	2.0	27
148	Initiation. The reactions of primary radicals. Makromolekulare Chemie Macromolecular Symposia, 1987, 10-11, 109-125.	0.6	27
149	Control of polymer structure by chain transfer processes. Macromolecular Symposia, 1996, 111, 1-11.	0.4	26
150	Substituent Effects on RAFT Polymerization with Benzyl Aryl Trithiocarbonates. Macromolecular Chemistry and Physics, 2010, 211, 529-538.	1.1	26
151	On the mechanism of decomposition of geminal diamines. Journal of the American Chemical Society, 1978, 100, 5495-5499.	6.6	25
152	Modeling the Kinetics of Monolith Formation by RAFT Copolymerization of Styrene and Divinylbenzene. Macromolecular Reaction Engineering, 2014, 8, 706-722.	0.9	25
153	RAFT Copolymerization and Its Application to the Synthesis of Novel Dispersants—Intercalants—Exfoliants for Polymer—Clay Nanocomposites. ACS Symposium Series, 2006, , 514-532.	0.5	24
154	Block Copolymer Synthesis through the Use of Switchable RAFT Agents. ACS Symposium Series, 2011 , , $81-102$.	0.5	24
155	Preparation of 1 : 1 alternating, nucleobase-containing copolymers for use in sequence-controlled polymerization. Polymer Chemistry, 2015, 6, 228-232.	1.9	24
156	Preparation of Macromonomers via Chain Transfer with and without Added Chain Transfer Agent. ACS Symposium Series, 2000, , 297-312.	0.5	22
157	Aqueous hydrogen peroxide-induced degradation of polyolefins: AÂgreener process for controlled-rheology polypropylene. Polymer Degradation and Stability, 2015, 117, 97-108.	2.7	22
158	Effect of the Z―and Macroâ€Râ€Croup on the Thermal Desulfurization of Polymers Synthesized with Acid/Base "Switchable―Dithiocarbamate RAFT Agents. Macromolecular Rapid Communications, 2018, 39, e1800228.	2.0	22
159	Selective and Rapid Lightâ€Induced RAFT Single Unit Monomer Insertion in Aqueous Solution. Macromolecular Rapid Communications, 2020, 41, e1900478.	2.0	22
160	Structural defects in polymers - their identification and significance. Pure and Applied Chemistry, 1985, 57, 985-992.	0.9	21
161	Azo and Peroxy Initiators. , 1989, , 97-121.		21
162	Chain Length Dependence of Radicalâ^'Radical Termination in Free Radical Polymerization:Â A Pulsed Laser Photolysis Investigation. Macromolecules, 2003, 36, 2032-2040.	2.2	21

#	Article	IF	CITATIONS
163	Terminology for aggregation and self-assembly in polymer science (IUPAC Recommendations 2013). Pure and Applied Chemistry, 2012, 85, 463-492.	0.9	21
164	Fundamentals of RAFT Polymerization. RSC Polymer Chemistry Series, 2013, , 205-249.	0.1	21
165	Effect of Scandium Triflate on the RAFT Copolymerization of Methyl Acrylate and Vinyl Acetate Controlled by an Acid/Base "Switchable―Chain Transfer Agent. Macromolecules, 2018, 51, 410-418.	2.2	21
166	Elements of RAFT Navigation. ACS Symposium Series, 2018, , 77-103.	0.5	21
167	Combination anti-HIV therapy via tandem release of prodrugs from macromolecular carriers. Polymer Chemistry, 2016, 7, 7477-7487.	1.9	20
168	Triple Activity of Lamivudine Releasing Sulfonated Polymers against HIV-1. Molecular Pharmaceutics, 2016, 13, 2397-2410.	2.3	20
169	Thermal stability of benzoyl peroxide-initiated polystyrene. Macromolecules, 1988, 21, 855-857.	2.2	19
170	Morphology-property relationships in ABS/PET blends. II. Influence of processing conditions on structure and properties., 1996, 62, 1709-1714.		19
171	Direct Measurement of Primary Radical Concentrations in Pulsed Laser Photolysis. Macromolecules, 1997, 30, 7627-7630.	2.2	19
172	Triphenylphosphine-grafted, RAFT-synthesised, porous monoliths as catalysts for Michael addition in flow synthesis. Reactive and Functional Polymers, 2015, 96, 89-96.	2.0	19
173	Developments in the synthesis of maleated polyolefins by reactive extrusion. Macromolecular Symposia, 1998, 129, 109-118.	0.4	18
174	Non-Ionic, Poly(ethylene oxide)-Based Surfactants as Intercalants/Dispersants/Exfoliants for Poly(propylene)-Clay Nanocomposites. Macromolecular Materials and Engineering, 2006, 291, 37-52.	1.7	18
175	A Potential New RAFT - Click Reaction or a Cautionary Note on the Use of Diazomethane to Methylate RAFT-synthesized Polymers. Australian Journal of Chemistry, 2011, 64, 433.	0.5	18
176	Head additon of radicals to methyl methacrylate. Polymer Bulletin, 1982, 6, 647.	1.7	17
177	RAFT for the Control of Monomer Sequence Distribution $\hat{a} \in \text{``Single Unit Monomer Insertion (SUMI)}$ into Dithiobenzoate RAFT Agents. ACS Symposium Series, 2014, , 133-147.	0.5	17
178	Synthesis of cleavable multi-functional mikto-arm star polymer by RAFT polymerization: example of an anti-cancer drug 7-ethyl-10-hydroxycamptothecin (SN-38) as functional moiety. Science China Chemistry, 2014, 57, 995-1001.	4.2	17
179	<i>Ab initio</i> RAFT emulsion polymerization mediated by small cationic RAFT agents to form polymers with low molar mass dispersity. Polymer Chemistry, 2019, 10, 5044-5051.	1.9	17

Kinetics and mechanism for thermal and photochemical decomposition of 4,4 \hat{a} e²-azobis(4-cyanopentanoic) Tj ETQqQ 0 0 rgBT/Overlock (180 mechanism) to the result of the result of

#	Article	IF	CITATIONS
181	Anthraquinone-Mediated Reduction of a Trithiocarbonate Chain-Transfer Agent to Initiate Electrochemical Reversible Addition–Fragmentation Chain Transfer Polymerization. Macromolecules, 2020, 53, 10315-10322.	2.2	16
182	Synthesis of Multicompositional Onionâ€like Nanoparticles via RAFT Emulsion Polymerization. Angewandte Chemie - International Edition, 2021, 60, 23281-23288.	7.2	16
183	Other Initiating Systems. , 1989, , 141-146.		15
184	Effects of solvent on model copolymerization reactions. A 13C-NMR study. European Polymer Journal, 1992, 28, 275-282.	2.6	15
185	Multiblock Copolymer Synthesis via Reversible Addition–Fragmentation Chain Transfer Emulsion Polymerization: Effects of Chain Mobility within Particles on Control over Molecular Weight Distribution. Macromolecules, 2021, 54, 3647-3658.	2.2	15
186	Evaluation of end groups in poly(methyl methacrylate-co-styrene) by 13C NMR. Polymer Bulletin, 1984, 12, 471.	1.7	14
187	Chapter 1. The History of Nitroxide-mediated Polymerization. RSC Polymer Chemistry Series, 2015, , 1-44.	0.1	14
188	Expanding the Scope of RAFT Multiblock Copolymer Synthesis Using the Nanoreactor Concept: The Critical Importance of Initiator Hydrophobicity. Macromolecules, 2022, 55, 1981-1991.	2.2	14
189	Computer simulation of the chemical properties of copolymers. Makromolekulare Chemie Macromolecular Symposia, 1991, 51, 127-146.	0.6	13
190	Versatile Approach for Preparing PVC-Based Mikto-Arm Star Additives Based on RAFT Polymerization. Macromolecules, 2020, 53, 4465-4479.	2.2	13
191	Initiation of RAFT Polymerization: Electrochemically Initiated RAFT Polymerization in Emulsion (Emulsion eRAFT), and Direct PhotoRAFT Polymerization of Liquid Crystalline Monomers. Australian Journal of Chemistry, 2021, 74, 56.	0.5	13
192	Fundamentals of reversible addition–fragmentation chain transfer (RAFT). Chemistry Teacher International, 2021, 3, 3-17.	0.9	13
193	Living polymerization: Rationale for uniform terminology. Journal of Polymer Science Part A, 2000, 38, 1709-1709.	2.5	12
194	Selective Bond Cleavage in RAFT Agents Promoted by Lowâ€Energy Electron Attachment. Angewandte Chemie - International Edition, 2021, 60, 19128-19132.	7.2	12
195	Characterization of polyolefin melts using the polymer reference interaction site model integral equation theory with a single-site united atom model. Journal of Polymer Science, Part B: Polymer Physics, 2001, 39, 1803-1814.	2.4	11
196	"All-PVC―Flexible Poly(vinyl Chloride): Nonmigratory <i>Star</i> -Poly(vinyl Chloride) as Plasticizers for PVC by RAFT Polymerization. Macromolecules, 2021, 54, 5022-5032.	2.2	11
197	Reconsidering terms for mechanisms of polymer growth: the "step-growth―and "chain-growth― dilemma. Polymer Chemistry, 2022, 13, 2262-2270.	1.9	11
198	Slow nitrogen inversion–N–O rotation in 2-alkoxy-1,1,3,3-tetramethylisoindolines. Journal of the Chemical Society Chemical Communications, 1985, , 1249-1250.	2.0	10

#	Article	IF	CITATIONS
199	Effect of ethyl aluminium sesquichloride on the relative reactivities of styrene and methyl methacrylate towards the 1-cyano-1-methylethyl and the 1-methyl-1-(methoxycarbonyl)ethyl radicals. European Polymer Journal, 1993, 29, 389-395.	2.6	10
200	The Critical Importance of Adopting Whole-of-Life Strategies for Polymers and Plastics. Sustainability, 2021, 13, 8218.	1.6	10
201	The mechanism of oxidation of 6-methyl-5-carba-5-deazatetrahydropterin. Evidence for the involvement cf a 4a-adduct in the oxidation of tetrahydropterins Tetrahedron Letters, 1978, 19, 2271-2274.	0.7	9
202	Kinetic Simulation of Polymerization Involving Termination by Reversible Chain Transfer. Australian Journal of Chemistry, 1986, 39, 1943.	0.5	9
203	Some Recent Developments in RAFT Polymerization. ACS Symposium Series, 2012, , 243-258.	0.5	9
204	Aluminium-chloride-promoted reactions of ethyl acrylate with olefins. Australian Journal of Chemistry, 1977, 30, 2733.	0.5	8
205	Effect of ethyl aluminium sesquichloride on the specificity of the reactions of 1-methyl-1-methoxycarbonylethyl radical. Polymer Bulletin, 1992, 27, 425-428.	1.7	8
206	Controlled synthesis of block polyesters by reactive extrusion. Macromolecular Symposia, 2003, 202, 37-46.	0.4	8
207	Chemistry of Bimolecular Termination. , 1989, , 147-160.		7
208	Chain Transfer., 2005,, 279-331.		7
209	Crystallisation kinetics of novel branched poly(ethylene terephthalate): a small-angle X-ray scattering study. Polymer International, 2006, 55, 1435-1443.	1.6	7
210	A small-angle X-ray scattering study of the effect of chain architecture on the shear-induced crystallization of branched and linear poly(ethylene terephthalate). Journal of Applied Crystallography, 2007, 40, s599-s604.	1.9	7
211	Glossary of terms relating to thermal and thermomechanical properties of polymers (IUPAC) Tj ETQq1 1 0.784314	rgBT /Ove	erlock 10 Tf
212	15N CP/MAS solid-state NMR spectroscopy of a 15N-enriched hindered amine light stabilizer photolyzed in acrylic/melamine and acrylic/urethane coatings. Polymer Degradation and Stability, 2000, 70, 81-88.	2.7	6
213	A Brief Guide to Polymer Nomenclature. Polymer, 2013, 54, 3-4.	1.8	6
214	Polymerization-Induced Phase Segregation and Self-Assembly of Siloxane Additives to Provide Thermoset Coatings with a Defined Surface Topology and Biocidal and Self-Cleaning Properties. Nanomaterials, 2019, 9, 1610.	1.9	6
215	Critical-Points (Azeotropic Compositions) in Multicomponent Copolymerization. Australian Journal of Chemistry, 1986, 39, 1877.	0.5	5
216	13C=O NMR Signal Assignments for Poly(n-butyl methacrylate-co-methyl methacrylate). Application of 13C-1H Correlation Spectroscopy and 13C Labelling. Polymer Journal, 1991, 23, 1401-1403.	1.3	5

#	Article	IF	Citations
217	Enhanced properties of well-defined polymer networks prepared by a sequential thiol-Michael - radical thiol-ene (STMRT) strategy. European Polymer Journal, 2021, 151, 110440.	2.6	5
218	Controlled Synthesis of Multifunctional Polymers by RAFT for Personal Care Applications. ACS Symposium Series, 2013, , 157-172.	0.5	4
219	Critical Points in Binary Copolymerization and the Penultimate Group Effect. Australian Journal of Chemistry, 1985, 38, 1287.	0.5	3
220	Applications of Labelling and Multidimensional NMR in the Characterization of Synthetic Polymers. Annual Reports on NMR Spectroscopy, 1994, , 287-323.	0.7	3
221	Radical Reactions., 2005, , 11-48.		3
222	Kinetic modelling of the reversible addition–fragmentation chain transfer polymerisation of N-isopropylacrylamide. European Polymer Journal, 2019, 120, 109193.	2.6	3
223	Living and controlled reversibleâ€activation polymerization (<scp>RAP</scp>) on the way to reversibleâ€deactivation radical polymerization (<scp>RDRP</scp>). Polymer International, 2023, 72, 861-868.	1.6	3
224	Copolymerization. , 2005, , 333-412.		2
225	A brief guide to polymer nomenclature from IUPAC. Colloid and Polymer Science, 2013, 291, 457-458.	1.0	2
226	Synthesis of Multicompositional Onionâ€like Nanoparticles via RAFT Emulsion Polymerization. Angewandte Chemie, 2021, 133, 23469.	1.6	2
227	Controlling Polymerization. , 2005, , 413-449.		1
228	Propagation., 2005,, 167-232.		1
229	A Brief Guide to Polymer Nomenclature. Polymer Testing, 2013, 32, iv-v.	2.3	1
230	A brief guide to polymer nomenclature. Reactive and Functional Polymers, 2013, 73, iv-v.	2.0	1
231	A Brief Guide to Polymer Nomenclature. Progress in Polymer Science, 2013, 38, iii-iv.	11.8	1
232	Frontispiece: Synthesis of Discrete Oligomers by Sequential PETâ€RAFT Singleâ€Unit Monomer Insertion. Angewandte Chemie - International Edition, 2017, 56, .	7.2	1
233	Definitions and notations relating to tactic polymers (IUPAC Recommendations 2020). Pure and Applied Chemistry, 2020, 92, 1769-1779.	0.9	1
234	Living Radical Polymerization by the RAFT Process. ChemInform, 2005, 36, no.	0.1	0

#	Article	IF	CITATIONS
235	Viscoelastic properties of vis-breaking polypropylenes. AIP Conference Proceedings, 2015, , .	0.3	o
236	Frontispiz: Synthesis of Discrete Oligomers by Sequential PETâ€RAFT Singleâ€Unit Monomer Insertion. Angewandte Chemie, 2017, 129, .	1.6	0
237	Cover Image, Volume 66, Issue 11. Polymer International, 2017, 66, i-i.	1.6	O
238	In Focus Emerging Polymer Technologies Summit (EPTS'16). Polymer International, 2017, 66, 1423-1423.	1.6	0
239	Emerging Polymer Technologies. Chemistry International, 2019, 41, 42-44.	0.3	O
240	Selektive Bindungsspaltung in RAFT Agenzien durch niederenergetische Elektronenanlagerung. Angewandte Chemie, 2021, 133, 19276-19281.	1.6	0
241	Macro-RAFT Synthesis by Single Unit Monomer Insertion (SUMI) into Dithiobenzoate RAFT Agents Towards Biological Precision. , 0, , .		O

Terminology and the naming of conjugates based on polymers or other substrates (IUPAC) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 462 Td