W Matthijs Blankesteijn

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4490389/publications.pdf Version: 2024-02-01

34 papers	1,919 citations	³⁹⁴⁴²¹ 19 h-index	414414 32 g-index
35 all docs	35 docs citations	35 times ranked	3213 citing authors

#	Article	IF	CITATIONS
1	Myocardial remodeling after infarction: the role of myofibroblasts. Nature Reviews Cardiology, 2010, 7, 30-37.	13.7	612
2	WNT Signaling in Cardiac and Vascular Disease. Pharmacological Reviews, 2018, 70, 68-141.	16.0	260
3	Blocking of Frizzled Signaling With a Homologous Peptide Fragment of Wnt3a/Wnt5a Reduces Infarct Expansion and Prevents the Development of Heart Failure After Myocardial Infarction. Circulation, 2011, 124, 1626-1635.	1.6	122
4	A homologue of Drosophila tissue polarity gene frizzled is expressed in migrating myofibroblasts in the infarcted rat heart. Nature Medicine, 1997, 3, 541-544.	30.7	102
5	The Wnt/frizzled/GSK-3β pathway: a novel therapeutic target for cardiac hypertrophy. Trends in Pharmacological Sciences, 2008, 29, 175-180.	8.7	77
6	Myofibroblasts in the Infarct Area: Concepts and Challenges. Microscopy and Microanalysis, 2012, 18, 35-49.	0.4	76
7	CXCL10 Is a Circulating Inflammatory Marker in Patients with Advanced Heart Failure: a Pilot Study. Journal of Cardiovascular Translational Research, 2016, 9, 302-314.	2.4	68
8	Treatment strategies for post-infarction left ventricular free-wall rupture. European Heart Journal: Acute Cardiovascular Care, 2019, 8, 379-387.	1.0	67
9	Pharmacological depletion of microglia and perivascular macrophages prevents vascular Cognitive Impairment in Ang II-induced Hypertension. Theranostics, 2020, 10, 9512-9527.	10.0	48
10	Long-term structural and functional consequences of cardiac ischaemia-reperfusion injuryin vivoin mice. Experimental Physiology, 2004, 89, 605-615.	2.0	43
11	Wnt Signaling in Cardiac Disease. , 2015, 5, 1183-1209.		43
12	Wnt signaling in atherosclerosis. European Journal of Pharmacology, 2015, 763, 122-130.	3.5	42
13	Left Ventricular Dysfunction and CXCR3 Ligands in Hypertension: From Animal Experiments to a Population-Based Pilot Study. PLoS ONE, 2015, 10, e0141394.	2.5	40
14	Hypertension-induced cognitive impairment: insights from prolonged angiotensin II infusion in mice. Hypertension Research, 2018, 41, 817-827.	2.7	36
15	Has the search for a marker of activated fibroblasts finally come to an end?. Journal of Molecular and Cellular Cardiology, 2015, 88, 120-123.	1.9	29
16	The Janus face of myofibroblasts in the remodeling heart. Journal of Molecular and Cellular Cardiology, 2016, 91, 35-41.	1.9	26
17	Wnt Signaling in Cardiac Remodeling and Heart Failure. Handbook of Experimental Pharmacology, 2016, 243, 371-393.	1.8	25
18	Myocardial and Serum Galectin-3 Expression Dynamics Marks Post-Myocardial Infarction Cardiac Remodelling. Heart Lung and Circulation, 2017, 26, 736-745.	0.4	24

W Matthijs Blankesteijn

#	Article	IF	CITATIONS
19	Cardiac (myo)fibroblast: Novel Strategies for its Targeting Following Myocardial Infarction. Current Pharmaceutical Design, 2014, 20, 1987-2002.	1.9	21
20	A Systematic Review of WNT Signaling in Endothelial Cell Oligodendrocyte Interactions: Potential Relevance to Cerebral Small Vessel Disease. Cells, 2020, 9, 1545.	4.1	20
21	UM206, a selective Frizzled antagonist, attenuates adverse remodeling after myocardial infarction in swine. Laboratory Investigation, 2016, 96, 168-176.	3.7	19
22	Effects of Urocortin 2 Versus Urocortin 3 Gene Transfer on Left Ventricular Function and Glucose Disposal. JACC Basic To Translational Science, 2018, 3, 249-264.	4.1	19
23	The Therapeutic Potential of Blocking Galectin-3 Expression in Acute Myocardial Infarction and Mitigating Inflammation of Infarct Region: A Clinical Outcome-Based Translational Study. Biomarker Insights, 2018, 13, 117727191877196.	2.5	17
24	Sutured and sutureless repair of postinfarction left ventricular free-wall rupture: a systematic review. European Journal of Cardio-thoracic Surgery, 2019, 56, 840-848.	1.4	14
25	Interventions in WNT Signaling to Induce Cardiomyocyte Proliferation: Crosstalk with Other Pathways. Molecular Pharmacology, 2020, 97, 90-101.	2.3	13
26	The Interplay of WNT and PPARÎ ³ Signaling in Vascular Calcification. Cells, 2020, 9, 2658.	4.1	12
27	Effect of Interventions in WNT Signaling on Healing of Cardiac Injury: A Systematic Review. Cells, 2021, 10, 207.	4.1	12
28	Attenuation of post-infarction remodeling in rats by sustained myocardial growth hormone administration. Growth Factors, 2015, 33, 250-258.	1.7	10
29	Wnt/β-Catenin Inhibitor Dickkopf 1. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, 121-123.	2.4	8
30	Urocortin 2 Gene Transfer Improves Heart Function in Aged Mice. Molecular Therapy, 2020, 28, 180-188.	8.2	4
31	Circulating CXCLâ€9, â€10 and â€11 Levels Improve the Discrimination of Risk Prediction Models for Left Ventricular Dysfunction. FASEB Journal, 2015, 29, 46.2.	0.5	4
32	Intermittent pacing therapy favorably modulates infarct remodeling. Basic Research in Cardiology, 2017, 112, 28.	5.9	3
33	The Beneficial Effects of UM206 on Wound Healing After Myocardial Infarction in Mice Are Lost in Follow-Up Experiments. Frontiers in Cardiovascular Medicine, 2019, 6, 118.	2.4	3

The Pharmacology of WNT Signaling. , 2021, , .