Danielle R. Reed

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4490157/publications.pdf

Version: 2024-02-01

136 papers 10,664 citations

56 h-index 98 g-index

158 all docs

158 docs citations

158 times ranked

10268 citing authors

#	Article	IF	CITATIONS
1	Massively collaborative crowdsourced research on COVID19 and the chemical senses: Insights and outcomes. Food Quality and Preference, 2022, 97, 104483.	2.3	8
2	NIH Workshop Report: sensory nutrition and disease. American Journal of Clinical Nutrition, 2021, 113, 232-245.	2.2	19
3	Divergent bitter and sweet taste perception intensity in chronic rhinosinusitis patients. International Forum of Allergy and Rhinology, 2021, 11, 857-865.	1.5	13
4	Denatonium benzoate bitter taste perception in chronic rhinosinusitis subgroups. International Forum of Allergy and Rhinology, 2021, 11, 967-975.	1.5	9
5	Bitter Taste Receptors and Chronic Otitis Media. Otolaryngology - Head and Neck Surgery, 2021, 165, 290-299.	1.1	2
6	Genetics of mouse behavioral and peripheral neural responses to sucrose. Mammalian Genome, 2021, 32, 51-69.	1.0	2
7	Genetic controls of Tas1r3-independent sucrose consumption in mice. Mammalian Genome, 2021, 32, 70-93.	1.0	2
8	The GSDMB rs7216389 SNP is associated with chronic rhinosinusitis in a multiâ€institutional cohort. International Forum of Allergy and Rhinology, 2021, 11, 1647-1653.	1.5	2
9	<i>SCENTinel 1.0</i> : Development of a Rapid Test to Screen for Smell Loss. Chemical Senses, 2021, 46, .	1.1	21
10	Recent Smell Loss Is the Best Predictor of COVID-19 Among Individuals With Recent Respiratory Symptoms. Chemical Senses, 2021, 46, .	1.1	119
11	Objective sensory testing methods reveal a higher prevalence of olfactory loss in COVID-19–positive patients compared to subjective methods: A systematic review and meta-analysis. Chemical Senses, 2020, 45, 865-874.	1.1	120
12	Cellular context of IL-33 expression dictates impact on anti-helminth immunity. Science Immunology, 2020, 5, .	5.6	73
13	Identifying Treatments for Taste and Smell Disorders: Gaps and Opportunities. Chemical Senses, 2020, 45, 493-502.	1.1	32
14	More Than Smellâ€"COVID-19 Is Associated With Severe Impairment of Smell, Taste, and Chemesthesis. Chemical Senses, 2020, 45, 609-622.	1.1	375
15	Studies of Human Twins Reveal Genetic Variation That Affects Dietary Fat Perception. Chemical Senses, 2020, 45, 467-481.	1.1	6
16	Tissue-dependent expression of bitter receptor TAS2R38 mRNA. Chemical Senses, 2019, 44, 33-40.	1.1	10
17	Chemosensory Changes from Cancer Treatment and Their Effects on Patients' Food Behavior: A Scoping Review. Nutrients, 2019, 11, 2285.	1.7	55
18	Associations between brain structure and perceived intensity of sweet and bitter tastes. Behavioural Brain Research, 2019, 363, 103-108.	1.2	8

#	Article	IF	Citations
19	Sensory nutrition: The role of taste in the reviews of commercial food products. Physiology and Behavior, 2019, 209, 112579.	1.0	26
20	New insight into human sweet taste: a genome-wide association study of the perception and intake of sweet substances. American Journal of Clinical Nutrition, 2019, 109, 1724-1737.	2.2	53
21	Bitter and sweet taste tests are reflective of disease status in chronic rhinosinusitis. Journal of Allergy and Clinical Immunology: in Practice, 2018, 6, 1078-1080.	2.0	29
22	Bivariate genome-wide association analysis strengthens the role of bitter receptor clusters on chromosomes 7 and 12 in human bitter taste. BMC Genomics, 2018, 19, 678.	1.2	16
23	Personalized expression of bitter †taste' receptors in human skin. PLoS ONE, 2018, 13, e0205322.	1.1	38
24	Taste Exam: A Brief and Validated Test. Journal of Visualized Experiments, 2018, , .	0.2	7
25	The Role of Quinine-Responsive Taste Receptor Family 2 in Airway Immune Defense and Chronic Rhinosinusitis. Frontiers in Immunology, 2018, 9, 624.	2.2	35
26	Burly1 is a mouse QTL for lean body mass that maps to a 0.8-Mb region of chromosome 2. Mammalian Genome, 2018, 29, 325-343.	1.0	3
27	Activation of airway epithelial bitter taste receptors by Pseudomonas aeruginosa quinolones modulates calcium, cyclic-AMP, and nitric oxide signaling. Journal of Biological Chemistry, 2018, 293, 9824-9840.	1.6	89
28	Genetic analysis of impaired trimethylamine metabolism using whole exome sequencing. BMC Medical Genetics, 2017, 18, 11.	2.1	9
29	Flavones modulate respiratory epithelial innate immunity: Anti-inflammatory effects and activation of the T2R14 receptor. Journal of Biological Chemistry, 2017, 292, 8484-8497.	1.6	97
30	Caffeine Bitterness is Related to Daily Caffeine Intake and Bitter Receptor mRNA Abundance in Human Taste Tissue. Perception, 2017, 46, 245-256.	0.5	33
31	Adiposity QTL Adip20 decomposes into at least four loci when dissected using congenic strains. PLoS ONE, 2017, 12, e0188972.	1.1	4
32	Individual Differences Among Children in Sucrose Detection Thresholds. Nursing Research, 2016, 65, 3-12.	0.8	81
33	The development of sweet taste: From biology to hedonics. Reviews in Endocrine and Metabolic Disorders, 2016, 17, 171-178.	2.6	139
34	Sweet Taste Perception is Associated with Body Mass Index at the Phenotypic and Genotypic Level. Twin Research and Human Genetics, 2016, 19, 465-471.	0.3	13
35	<i>TAS2R38</i> genotype predicts surgical outcome in nonpolypoid chronic rhinosinusitis. International Forum of Allergy and Rhinology, 2016, 6, 25-33.	1.5	91
36	Is the Association Between Sweet and Bitter Perception due to Genetic Variation?. Chemical Senses, 2016, 41, 737-744.	1.1	21

#	Article	IF	CITATIONS
37	Genetics of Amino Acid Taste and Appetite. Advances in Nutrition, 2016, 7, 806S-822S.	2.9	64
38	Variation in the TAS2R31 bitter taste receptor gene relates to liking for the nonnutritive sweetener Acesulfame-K among children and adults. Scientific Reports, 2016, 6, 39135.	1.6	23
39	T2R38 genotype is correlated with sinonasal quality of life in homozygous î"F508 cystic fibrosis patients. International Forum of Allergy and Rhinology, 2016, 6, 356-361.	1.5	50
40	A role for airway taste receptor modulation in the treatment of upper respiratory infections. Expert Review of Respiratory Medicine, 2016, 10, 157-170.	1.0	10
41	A Common Genetic Influence on Human Intensity Ratings of Sugars and High-Potency Sweeteners. Twin Research and Human Genetics, 2015, 18, 361-367.	0.3	61
42	Children's perceptions about medicines: individual differences and taste. BMC Pediatrics, 2015, 15, 130.	0.7	39
43	Recent Advances in Fatty Acid Perception and Genetics. Advances in Nutrition, 2015, 6, 353S-360S.	2.9	34
44	"A Spoonful of Sugar Helps the Medicine Go Down― Bitter Masking by Sucrose Among Children and Adults. Chemical Senses, 2015, 40, 17-25.	1.1	63
45	Genome-wide meta-analysis identifies six novel loci associated with habitual coffee consumption. Molecular Psychiatry, 2015, 20, 647-656.	4.1	235
46	Functional Analyses of Bitter Taste Receptors in Domestic Cats (Felis catus). PLoS ONE, 2015, 10, e0139670.	1.1	42
47	Body Composition QTLs Identified in Intercross Populations Are Reproducible in Consomic Mouse Strains. PLoS ONE, 2015, 10, e0141494.	1.1	9
48	Preferences for Salty and Sweet Tastes Are Elevated and Related to Each Other during Childhood. PLoS ONE, 2014, 9, e92201.	1,1	153
49	Age-Related Differences in Bitter Taste and Efficacy of Bitter Blockers. PLoS ONE, 2014, 9, e103107.	1.1	55
50	The bitter taste receptor T2R38 is an independent risk factor for chronic rhinosinusitis requiring sinus surgery. International Forum of Allergy and Rhinology, 2014, 4, 3-7.	1.5	142
51	The Bamboo-Eating Giant Panda (Ailuropoda melanoleuca) Has a Sweet Tooth: Behavioral and Molecular Responses to Compounds That Taste Sweet to Humans. PLoS ONE, 2014, 9, e93043.	1.1	12
52	The maize <i>brown midrib2</i> (<i>bm2</i>) gene encodes a methylenetetrahydrofolate reductase that contributes to lignin accumulation. Plant Journal, 2014, 77, 380-392.	2.8	94
53	Genetics of Taste Receptors. Current Pharmaceutical Design, 2014, 20, 2669-2683.	0.9	153
54	The Bad Taste of Medicines: Overview of Basic Research on Bitter Taste. Clinical Therapeutics, 2013, 35, 1225-1246.	1.1	196

#	Article	IF	CITATIONS
55	Human bitter perception correlates with bitter receptor messenger RNA expression in taste cells. American Journal of Clinical Nutrition, 2013, 98, 1136-1143.	2.2	88
56	Genetics of the taste receptor T2R38 correlates with chronic rhinosinusitis necessitating surgical intervention. International Forum of Allergy and Rhinology, 2013, 3, 184-187.	1.5	93
57	QTL Analysis of Dietary Obesity in C57BL/6byj X 129P3/J F2 Mice: Diet- and Sex-Dependent Effects. PLoS ONE, 2013, 8, e68776.	1.1	21
58	Genetic Analysis of Chemosensory Traits in Human Twins. Chemical Senses, 2012, 37, 869-881.	1.1	82
59	A Genome-Wide Study on the Perception of the Odorants Androstenone and Galaxolide. Chemical Senses, 2012, 37, 541-552.	1.1	33
60	The proof is in the pudding: children prefer lower fat but higher sugar than do mothers. International Journal of Obesity, 2012, 36, 1285-1291.	1.6	72
61	Reply to Zhao and Zhang: Loss of taste receptor function in mammals is directly related to feeding specializations. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, .	3.3	5
62	Heritable differences in chemosensory ability among humans. Flavour, 2012, 1, .	2.3	22
63	Major taste loss in carnivorous mammals. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 4956-4961.	3.3	237
64	Relationship Between Bitter-Taste Receptor Genotype and Solid Medication Formulation Usage Among Young Children: A Retrospective Analysis. Clinical Therapeutics, 2012, 34, 728-733.	1.1	28
65	Obesity: lessons from evolution and the environment. Obesity Reviews, 2012, 13, 910-922.	3.1	59
66	T2R38 taste receptor polymorphisms underlie susceptibility to upper respiratory infection. Journal of Clinical Investigation, 2012, 122, 4145-4159.	3.9	474
67	Sweet Taste Receptor Gene Variation and Aspartame Taste in Primates and Other Species. Chemical Senses, 2011, 36, 453-475.	1.1	38
68	The Gustatory and Olfactory Systems During Infancy: Implications for Development of Feeding Behaviors in the High-Risk Neonate. Clinics in Perinatology, 2011, 38, 627-641.	0.8	83
69	Body fat distribution and organ weights of 14 common strains and a 22-strain consomic panel of rats. Physiology and Behavior, 2011, 103, 523-529.	1.0	27
70	Genetics of sweet taste preferences. Flavour and Fragrance Journal, 2011, 26, 286-294.	1.2	67
71	Psychophysical Dissection of Genotype Effects on Human Bitter Perception. Chemical Senses, 2011, 36, 161-167.	1.1	53
72	Excretion and Perception of a Characteristic Odor in Urine after Asparagus Ingestion: a Psychophysical and Genetic Study. Chemical Senses, 2011, 36, 9-17.	1.1	53

#	Article	IF	Citations
73	Age modifies the genotype-phenotype relationship for the bitter receptor TAS2R38. BMC Genetics, 2010, 11, 60.	2.7	156
74	The perception of quinine taste intensity is associated with common genetic variants in a bitter receptor cluster on chromosome 12. Human Molecular Genetics, 2010, 19, 4278-4285.	1.4	125
75	Genetics of Taste and Smell. Progress in Molecular Biology and Translational Science, 2010, 94, 213-240.	0.9	212
76	Gustation Genetics: Sweet Gustducin!. Chemical Senses, 2010, 35, 549-550.	1.1	8
77	A marker of growth differs between adolescents with high vs. low sugar preference. Physiology and Behavior, 2009, 96, 574-580.	1.0	120
78	Heritable Variation in Fat Preference. Frontiers in Neuroscience, 2009, , 395-415.	0.0	1
79	Reduced body weight is a common effect of gene knockout in mice. BMC Genetics, 2008, 9, 4.	2.7	85
80	Calcium taste preferences: genetic analysis and genome screen of C57BL/6Jâ€f×â€fPWK/PhJ hybrid mice. Gen Brain and Behavior, 2008, 7, 618-628.	es _{1.1}	25
81	QTL for Body Composition on Chromosome 7 Detected Using a Chromosome Substitution Mouse Strain. Obesity, 2008, 16, 483-487.	1.5	11
82	Animal Models of Gene–Nutrient Interactions. Obesity, 2008, 16, S23-7.	1.5	12
83	Birth of a New Breed of Supertaster. Chemical Senses, 2008, 33, 489-491.	1.1	32
84	Involvement of T1R3 in calcium-magnesium taste. Physiological Genomics, 2008, 34, 338-348.	1.0	73
85	Twin Study of the Heritability of Recognition Thresholds for Sour and Salty Taste. Chemical Senses, 2007, 32, 749-754.	1.1	89
86	Forty mouse strain survey of water and sodium intake. Physiology and Behavior, 2007, 91, 620-631.	1.0	67
87	Forty mouse strain survey of body composition. Physiology and Behavior, 2007, 91, 593-600.	1.0	100
88	Forty mouse strain survey of voluntary calcium intake, blood calcium, and bone mineral content. Physiology and Behavior, 2007, 91, 632-643.	1.0	44
89	Genetic loci affecting body weight and fatness in a C57BL/6J × PWK/PhJ mouse intercross. Mammalian Genome, 2007, 18, 839-851.	1.0	14
90	Taste as the Gatekeeper of Personalized Nutrition. , 2007, , 115-132.		3

#	Article	IF	Citations
91	Diverse tastes: Genetics of sweet and bitter perception. Physiology and Behavior, 2006, 88, 215-226.	1.0	151
92	Cats Lack a Sweet Taste Receptor. Journal of Nutrition, 2006, 136, 1932S-1934S.	1.3	68
93	The Human Sweet Tooth. BMC Oral Health, 2006, 6, S17.	0.8	57
94	Quantitative trait loci for individual adipose depot weights in C57BL/6ByJ \times 129P3/J F2 mice. Mammalian Genome, 2006, 17, 1065-1077.	1.0	30
95	A locus on mouse Chromosome 9 (Adip5) affects the relative weight of the gonadal but not retroperitoneal adipose depot. Mammalian Genome, 2006, 17, 1078-1092.	1.0	18
96	Heritability and Genetic Covariation of Sensitivity to PROP, SOA, Quinine HCl, and Caffeine. Chemical Senses, 2006, 31, 403-413.	1.1	101
97	The Molecular Basis of Individual Differences in Phenylthiocarbamide and Propylthiouracil Bitterness Perception. Current Biology, 2005, 15, 322-327.	1.8	625
98	Pseudogenization of a Sweet-Receptor Gene Accounts for Cats' Indifference toward Sugar. PLoS Genetics, 2005, 1, e3.	1.5	203
99	No Relationship between Sequence Variation in Protein Coding Regions of the Tas1r3 Gene and Saccharin Preference in Rats. Chemical Senses, 2005, 30, 231-240.	1.1	25
100	Genetic and Environmental Determinants of Bitter Perception and Sweet Preferences. Pediatrics, 2005, 115, e216-e222.	1.0	456
101	Allelic Variation of the Tas1r3 Taste Receptor Gene Selectively Affects Behavioral and Neural Taste Responses to Sweeteners in the F2 Hybrids between C57BL/6ByJ and 129P3/J Mice. Journal of Neuroscience, 2004, 24, 2296-2303.	1.7	84
102	Polymorphisms in the Taste Receptor Gene (Tas1r3) Region Are Associated with Saccharin Preference in 30 Mouse Strains. Journal of Neuroscience, 2004, 24, 938-946.	1.7	169
103	Bitter Receptor Gene (TAS2R38), 6-n-Propylthiouracil (PROP) Bitterness and Alcohol Intake. Alcoholism: Clinical and Experimental Research, 2004, 28, 1629-1637.	1.4	346
104	Progress in Human Bitter Phenylthiocarbamide Genetics. , 2004, , .		2
105	The Human Sweet Tooth and Its Relationship to Obesity. Nutrition and Disease Prevention, 2004, , 51-70.	0.1	3
106	Research issues in genetic testing of adolescents for obesity. Nutrition Reviews, 2004, 62, 307-20.	2.6	7
107	Loci on Chromosomes 2, 4, 9, and 16 for body weight, body length, and adiposity identified in a genome scan of an F 2 intercross between the 129P3/J and C57BL/6ByJ mouse strains. Mammalian Genome, 2003, 14, 302-313.	1.0	49
108	Voluntary Ethanol Consumption by Mice: Genome-Wide Analysis of Quantitative Trait Loci and Their Interactions in a C57BL/6ByJ x 129P3/J F2 Intercross. Genome Research, 2002, 12, 1257-1268.	2.4	52

#	Article	IF	CITATIONS
109	Genetics of Sweet Taste. ACS Symposium Series, 2002, , 40-51.	0.5	1
110	Genetics of sweet taste preferences. Pure and Applied Chemistry, 2002, 74, 1135-1140.	0.9	19
111	Genetic, physical, and comparative map of the subtelomeric region of mouse Chromosome 4. Mammalian Genome, 2002, 13, 5-19.	1.0	18
112	Food intake, water intake, and drinking spout side preference of 28 mouse strains. Behavior Genetics, 2002, 32, 435-443.	1.4	560
113	The genetics of phenylthiocarbamide perception. Annals of Human Biology, 2001, 28, 111-142.	0.4	268
114	Nutrient preference and diet-induced adiposity in C57BL/6ByJ and 129P3/J mice. Physiology and Behavior, 2001, 72, 603-613.	1.0	109
115	High-resolution genetic mapping of the saccharin preference locus (Sac) and the putative sweet taste receptor (T1R1) gene (Gpr70) to mouse distal Chromosome 4. Mammalian Genome, 2001, 12, 13-16.	1.0	114
116	A genome-wide scan suggests a locus on chromosome 1–23 contributes to normal variation in plasma cholesterol concentration. Journal of Molecular Medicine, 2001, 79, 262-269.	1.7	29
117	Leptin resistance is associated with extreme obesity and aggregates in families. International Journal of Obesity, 2001, 25, 1471-1473.	1.6	55
118	X-linkage does not account for the absence of father-son similarity in plasma uric acid concentrations., 2000, 92, 142-146.		10
119	Resemblance for Body Mass Index in Families of Obese African American and European American Women. Obesity, 2000, 8, 360-366.	4.0	26
120	Genome Scan for Human Obesity and Linkage to Markers in 20q13. American Journal of Human Genetics, 1999, 64, 196-209.	2.6	218
121	Localization of a Gene for Bitter-Taste Perception to Human Chromosome 5p15. American Journal of Human Genetics, 1999, 64, 1478-1480.	2.6	129
122	Dieting, Exercise, or Disordered Eating Does Not Account for Extremes of Body Weight within Families. Obesity, 1998, 6, 332-337.	4.0	1
123	Heritable variation in food preferences and their contribution to obesity. Behavior Genetics, 1997, 27, 373-387.	1.4	175
124	Sucrose consumption in mice: Major influence of two genetic Loci affecting peripheral sensory responses. Mammalian Genome, 1997, 8, 545-548.	1.0	121
125	Intake of ethanol, sodium chloride, sucrose, citric acid, and quinine hydrochloride solutions by mice: A genetic analysis. Behavior Genetics, 1996, 26, 563-573.	1.4	127
126	Propylthiouracil Tasting: Determination of Underlying Threshold Distributions using Maximum Likelihood. Chemical Senses, 1995, 20, 529-533.	1.1	72

#	Article	lF	CITATIONS
127	Absence of Linkage Between Human Obesity and the Mouse Agouti Homologous Region (20q11.2) or Other Markers Spanning Chromosome 20q. Obesity, 1995, 3, 559-562.	4.0	14
128	Obesity in Families of Extremely Obese Women. Obesity, 1993, 1, 167-172.	4.0	9
129	RFLP for Bgl II at the human neurofilament medium chain (NEF3) gene locus. Nucleic Acids Research, 1992, 20, 1429-1429.	6.5	1
130	Human Bg/II/Bc/I RFLP recognized by 5' region of human MAP 2 gene probe. Human Molecular Genetics, 1992, 1, 655-655.	1.4	0
131	Experience with a macronutrient source influences subsequent macronutrient selection. Appetite, 1992, 18, 223-232.	1.8	19
132	Sham-feeding sucrose or corn oil stimulates food intake in rats. Appetite, 1991, 17, 97-103.	1.8	16
133	Sham-feeding of corn oil by rats: Sensory and postingestive factors. Physiology and Behavior, 1990, 47, 779-781.	1.0	33
134	Diet composition alters the acceptance of fat by rats. Appetite, 1990, 14, 219-230.	1.8	46
135	Weight cycling in female rats increases dietary fat selection and adiposity. Physiology and Behavior, 1988, 42, 389-395.	1.0	76
136	Tolerance to hypothermia induced by ethanol depends on specific drug effects. Psychopharmacology, 1986, 89, 45-51.	1.5	26