Lambertus A M Van Den Broek

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4490141/publications.pdf

Version: 2024-02-01

76 papers

3,732 citations

32 h-index 59 g-index

80 all docs 80 docs citations

80 times ranked

4641 citing authors

#	Article	IF	Citations
1	Nitrogen-to-Protein Conversion Factors for Three Edible Insects: <i>Tenebrio molitor</i> , <i>Alphitobius diaperinus</i> , and <i>Hermetia illucens</i> . Journal of Agricultural and Food Chemistry, 2017, 65, 2275-2278.	2.4	442
2	Chitosan films and blends for packaging material. Carbohydrate Polymers, 2015, 116, 237-242.	5.1	346
3	<i>Bifidobacterium</i> carbohydrasesâ€their role in breakdown and synthesis of (potential) prebiotics. Molecular Nutrition and Food Research, 2008, 52, 146-163.	1.5	151
4	Downstream processing of Isochrysis galbana: a step towards microalgal biorefinery. Green Chemistry, 2015, 17, 4599-4609.	4.6	140
5	Relative Abundance and Inhibitory Distribution of Protease Inhibitors in Potato Juice from cv. Elkana. Journal of Agricultural and Food Chemistry, 2001, 49, 2864-2874.	2.4	139
6	Production Methods for Hyaluronan. International Journal of Carbohydrate Chemistry, 2013, 2013, 1-14.	1.5	130
7	Cloning and characterization of arabinoxylan arabinofuranohydrolase-D3 (AXHd3) from Bifidobacterium adolescentis DSM20083. Applied Microbiology and Biotechnology, 2005, 67, 641-647.	1.7	105
8	Water-soluble chitosan derivatives and pH-responsive hydrogels by selective C-6 oxidation mediated by TEMPO-laccase redox system. Carbohydrate Polymers, 2018, 186, 299-309.	5.1	101
9	Rhamnogalacturonan acetylesterase: a novel enzyme from Aspergillus aculeatus, specific for the deacetylation of hairy (ramified) regions of pectins. Applied Microbiology and Biotechnology, 1992, 38, 347-349.	1.7	86
10	In muro fragmentation of the rhamnogalacturonan I backbone in potato (Solanum tuberosum L.) results in a reduction and altered location of the galactan and arabinan side-chains and abnormal periderm development. Plant Journal, 2002, 30, 403-413.	2.8	86
11	Energy consumption and water-soluble protein release by cell wall disruption of Nannochloropsis gaditana. Bioresource Technology, 2017, 239, 204-210.	4.8	86
12	Crystal Structure of Sucrose Phosphorylase fromBifidobacterium adolescentisâ€. Biochemistry, 2004, 43, 1156-1162.	1.2	85
13	Biorefinery of microalgal soluble proteins by sequential processing and membrane filtration. Bioresource Technology, 2017, 225, 151-158.	4.8	84
14	Purification and mode of action of two different arabinoxylan arabinofuranohydrolases from Bifidobacterium adolescentis DSM 20083. Applied Microbiology and Biotechnology, 1999, 51, 606-613.	1.7	81
15	Structural Rearrangements of Sucrose Phosphorylase from Bifidobacterium adolescentis during Sucrose Conversion. Journal of Biological Chemistry, 2006, 281, 35576-35584.	1.6	76
16	Green compressed fluid technologies for downstream processing of Scenedesmus obliquus in a biorefinery approach. Algal Research, 2017, 24, 111-121.	2.4	71
17	Physico-chemical and transglucosylation properties of recombinant sucrose phosphorylase from Bifidobacterium adolescentis DSM20083. Applied Microbiology and Biotechnology, 2004, 65, 219-227.	1.7	68
18	Legumin allergens from peanuts and soybeans: Effects of denaturation and aggregation on allergenicity. Molecular Nutrition and Food Research, 2008, 52, 674-682.	1.5	61

#	Article	IF	CITATIONS
19	\hat{l}^2 -Galactosidase from Bifidobacterium adolescentis DSM20083 prefers $\hat{l}^2(1,4)$ -galactosides over lactose. Applied Microbiology and Biotechnology, 2004, 66, 276-284.	1.7	59
20	A new family of rhamnogalacturonan lyases contains an enzyme that binds to cellulose. Biochemical Journal, 2001, 355, 167-177.	1.7	56
21	Chitinase Chi1 from <i>Myceliophthora thermophila</i> C1, a Thermostable Enzyme for Chitin and Chitosan Depolymerization. Journal of Agricultural and Food Chemistry, 2018, 66, 1658-1669.	2.4	54
22	The Most Abundant Protease Inhibitor in Potato Tuber (Cv. Elkana) Is a Serine Protease Inhibitor from the Kunitz Family. Journal of Agricultural and Food Chemistry, 2003, 51, 5001-5005.	2.4	53
23	Cationic polymers for successful flocculation of marine microalgae. Bioresource Technology, 2014, 169, 804-807.	4.8	52
24	Bifidobacterium longum Endogalactanase Liberates Galactotriose from Type I Galactans. Applied and Environmental Microbiology, 2005, 71, 5501-5510.	1.4	51
25	Botryococcus braunii strains compared for biomass productivity, hydrocarbon and carbohydrate content. Journal of Biotechnology, 2017, 248, 77-86.	1.9	50
26	A high phosphate diet lowers blood pressure in spontaneously hypertensive rats Hypertension, 1987, 9, 96-102.	1.3	46
27	Enzymatic synthesis of oligo- and polysaccharide fatty acid esters. Carbohydrate Polymers, 2013, 93, 65-72.	5.1	46
28	Allergen Ara h 1 Occurs in Peanuts as a Large Oligomer Rather Than as a Trimer. Journal of Agricultural and Food Chemistry, 2006, 54, 7180-7186.	2.4	45
29	Increasing the transglycosylation activity of α-galactosidase fromBifidobacterium adolescentisDSM 20083 by site-directed mutagenesis. Biotechnology and Bioengineering, 2006, 93, 122-131.	1.7	36
30	Bifidobacterium glycoside hydrolases and (potential) prebiotics. Innovative Food Science and Emerging Technologies, 2008, 9, 401-407.	2.7	36
31	Lipase-catalyzed synthesis of oligoesters of 2,5-furandicarboxylic acid with aliphatic diols. Pure and Applied Chemistry, 2015, 87, 59-69.	0.9	34
32	A new family of rhamnogalacturonan lyases contains an enzyme that binds to cellulose. Biochemical Journal, 2001, 355, 167.	1.7	33
33	Cloning and characterization of two α-glucosidases from Bifidobacterium adolescentis DSM20083. Applied Microbiology and Biotechnology, 2003, 61, 55-60.	1.7	31
34	Title is missing!. Biotechnology Letters, 1999, 21, 441-445.	1.1	30
35	Production methods for heparosan, a precursor of heparin and heparan sulfate. Carbohydrate Polymers, 2013, 93, 38-47.	5.1	29
36	Selective fractionation of free glucose and starch from microalgae using aqueous two-phase systems. Algal Research, 2020, 46, 101801.	2.4	29

#	Article	IF	Citations
37	An exogalacturonase from Aspergillus aculeatus able to degrade xylogalacturonan. Biotechnology Letters, 1996, 18, 707-712.	1.1	28
38	Stereochemical Course of Hydrolysis Catalysed by \hat{l}_{\pm} -l-Rhamnosyl and \hat{l}_{\pm} -d-Galacturonosyl Hydrolases from Aspergillus aculeatus. Biochemical and Biophysical Research Communications, 1998, 242, 552-559.	1.0	27
39	Pectin lyase is a key enzyme in the maceration of potato tuber. Journal of the Science of Food and Agriculture, 1997, 75, 167-172.	1.7	26
40	Studies on apple protopectin VI: extraction of pectins from apple cell walls with rhamnogalacturonase. Carbohydrate Polymers, 1993, 22, 203-210.	5.1	25
41	Determination of Pepsin-Susceptible and Pepsin-Resistant Epitopes in Native and Heat-Treated Peanut Allergen Ara h 1. Journal of Agricultural and Food Chemistry, 2008, 56, 2223-2230.	2.4	24
42	Computer-aided solvent screening for biocatalysis. Journal of Molecular Catalysis B: Enzymatic, 2013, 85-86, 200-213.	1.8	24
43	Isolation and characterization of an endopolygalacturonase from Phanerochaete chrysosporium. Journal of Biotechnology, 1993, 28, 179-197.	1.9	23
44	Purification and characterisation of a \hat{l}^2 -galactosidase from Aspergillus aculeatus with activity towards (modified) exopolysaccharides from Lactococcus lactis subsp. cremoris B39 and B891. Carbohydrate Research, 2000, 329, 75-85.	1.1	23
45	Increased plasma calcitonin levels in young spontaneously hypertensive rats: role in disturbed phosphate homeostasis. Pflugers Archiv European Journal of Physiology, 1987, 408, 395-400.	1.3	22
46	Analysis of the Polymerization Initiation and Activity of Pasteurella multocida Heparosan Synthase PmHS2, an Enzyme with Glycosyltransferase and UDP-sugar Hydrolase Activity. Journal of Biological Chemistry, 2011, 286, 1777-1785.	1.6	22
47	Chitin and Chitosan as Functional Biopolymers for Industrial Applications. , 2012, , 329-373.		22
48	Techno-Functional Properties of Crude Extracts from the Green Microalga <i>Tetraselmis suecica</i> Journal of Agricultural and Food Chemistry, 2018, 66, 7831-7838.	2.4	22
49	Peanut Allergen Ara h 1 Interacts with Proanthocyanidins into Higher Molecular Weight Complexes. Journal of Agricultural and Food Chemistry, 2007, 55, 8772-8778.	2.4	21
50	Effect of pH on the kinetics of Na+-dependent phosphate transport in rat renal brush-border membranes. Biochimica Et Biophysica Acta - Biomembranes, 1987, 897, 83-92.	1.4	20
51	Purification and characterization of novel fibrinolytic proteases as potential antithrombotic agents from earthworm Perionyx excavatus. AMB Express, 2011, 1, 26.	1.4	20
52	Synthesis of heparosan oligosaccharides by Pasteurella multocida PmHS2 single-action transferases. Applied Microbiology and Biotechnology, 2012, 95, 1199-1210.	1.7	20
53	Biocatalytic acylation of sugar alcohols by 3-(4-hydroxyphenyl)propionic acid. Process Biochemistry, 2012, 47, 1894-1902.	1.8	18
54	Structural Characterization of Potato Protease Inhibitor I (Cv. Bintje) after Expression inPichia pastoris. Journal of Agricultural and Food Chemistry, 2004, 52, 4928-4934.	2.4	17

#	Article	IF	CITATIONS
55	Molecular sieves provoke multiple substitutions in the enzymatic synthesis of fructose oligosaccharide–lauryl esters. Journal of Molecular Catalysis B: Enzymatic, 2010, 62, 183-189.	1.8	17
56	Structure and Stability of the Potato Cysteine Protease Inhibitor Group (Cv. Elkana). Journal of Agricultural and Food Chemistry, 2005, 53, 5739-5746.	2.4	16
57	\hat{l}^2 -N-Acetylglucosaminidase MthNAG from Myceliophthora thermophila C1, a thermostable enzyme for production of N-acetylglucosamine from chitin. Applied Microbiology and Biotechnology, 2018, 102, 7441-7454.	1.7	15
58	Fungal and Plant Xyloglucanases May Act in Concert During Liquefaction of Apples. Journal of the Science of Food and Agriculture, 1997, 73, 407-416.	1.7	13
59	Conformational Stability of the Potato Serine Protease Inhibitor Group. Journal of Agricultural and Food Chemistry, 2005, 53, 3191-3196.	2.4	12
60	Polysaccharides in Human Health Care. Natural Product Communications, 2017, 12, 1934578X1701200.	0.2	12
61	Histological Examination of Horse Chestnut Infection by Pseudomonas syringae pv. aesculi and Non-Destructive Heat Treatment to Stop Disease Progression. PLoS ONE, 2012, 7, e39604.	1.1	11
62	Tentative Assignment of the Potato Serine Protease Inhibitor Group as Î ² -II Proteins Based on Their Spectroscopic Characteristics. Journal of Agricultural and Food Chemistry, 2004, 52, 7704-7710.	2.4	10
63	MAB2.0 project: Integrating algae production into wastewater treatment. The EuroBiotech Journal, 2018, 2, 10-23.	0.5	10
64	Heat denaturation of Brazil nut allergen Ber e 1 in relation to food processing. Food Chemistry, 2008, 110, 904-908.	4.2	9
65	The effect of meâ€substituents of 1,4â€butanediol analogues on the thermal properties of biobased polyesters. Journal of Polymer Science Part A, 2018, 56, 1903-1906.	2.5	9
66	Effect of removal of bacteria on the biomass and extracellular carbohydrate productivity of Botryococcus braunii. Journal of Applied Phycology, 2019, 31, 3453-3463.	1.5	9
67	Chemoenzymatic Synthesis of New Aromatic Esters of Mono- and Oligosaccharides. Processes, 2020, 8, 1638.	1.3	9
68	Methods for the preparation of cell walls from potatoes. Journal of the Science of Food and Agriculture, 2002, 82, 834-839.	1.7	8
69	Effect of growth conditions on the efficiency of cell disruption of Neochloris oleoabundans. Bioresource Technology, 2020, 300, 122699.	4.8	8
70	Glycosyl hydrolases from Bifidobacterium adolescentis DSM20083. An overview. Dairy Science and Technology, 2005, 85, 125-133.	0.9	8
71	Calcium homeostasis of epithelial cells. Comparative Biochemistry and Physiology A, Comparative Physiology, 1988, 90, 767-770.	0.7	7
72	Physicochemical and catalytic properties of three endopolygalacturonases from Penicillium pinophilum. Journal of Biotechnology, 1993, 28, 199-218.	1.9	7

#	Article	IF	CITATIONS
73	New enzymes active towards pectic structures. Progress in Biotechnology, 1996, , 231-245.	0.2	6
74	Expanded bed adsorption as a fast technique for the large-scale purification of the complete isoform pool of Ber e 1, the major allergen from Brazil nuts. Molecular Nutrition and Food Research, 2006, 50, 275-281.	1.5	2
75	Microalgae as Renewable Raw Material for Bioproducts. , 2018, , 39-68.		1
76	Polysaccharide-Acting Enzymes and Their Applications. , 2012, , 375-392.		1