Carlos Eduardo Cerri

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4490063/publications.pdf

Version: 2024-02-01

210 papers

8,752 citations

52 h-index ⁵⁸⁵⁴⁹ **82**

g-index

213 all docs

213 docs citations

213 times ranked

9019 citing authors

#	Article	IF	Citations
1	Accessing biochar's porosity using a new low field NMR approach and its impacts on the retention of highly mobile herbicides. Chemosphere, 2022, 287, 132237.	4.2	6
2	Beneficial services of Glomalin and Arbuscular Mycorrhizal fungi in degraded soils in Brazil. Scientia Agricola, 2022, 79, .	0.6	10
3	Soil nitrous oxide emissions after the introduction of integrated cropping systems in subtropical condition. Agriculture, Ecosystems and Environment, 2022, 323, 107684.	2.5	3
4	Biochar aging: Impact of pyrolysis temperature on sediment carbon pools and the availability of arsenic and lead. Science of the Total Environment, 2022, 807, 151001.	3.9	9
5	Conversion of Brazilian savannah to agricultural land affects quantity and quality of labile soil organic matter. Geoderma, 2022, 406, 115509.	2.3	5
6	Changes in soil temperature and moisture due to sugarcane straw removal in central-southern Brazil. Scientia Agricola, 2022, 79, .	0.6	4
7	Changes in soil organic matter fractions induced by cropland and pasture expansion in Brazil's new agricultural frontier. Geoderma Regional, 2022, 28, e00474.	0.9	7
8	Soybean expansion impacts on soil organic matter in the eastern region of the Maranhão State (Northeastern Brazil). Soil Use and Management, 2022, 38, 1203-1216.	2.6	3
9	Sugarcane residue and N-fertilization effects on soil GHG emissions in south-central, Brazil. Biomass and Bioenergy, 2022, 158, 106342.	2.9	7
10	The Brazilian soil priorities. Geoderma Regional, 2022, 29, e00503.	0.9	1
11	Potential of no-till agriculture as a nature-based solution for climate-change mitigation in Brazil. Soil and Tillage Research, 2022, 220, 105368.	2.6	11
12	Impact of rainfed and irrigated agriculture systems on soil carbon stock under different climate scenarios in the semi-arid region of Brazil. Journal of Arid Land, 2022, 14, 359-373.	0.9	1
13	Linking land-use and land-cover transitions to their ecological impact in the Amazon. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	24
14	Changes in soil carbon and soil carbon sequestration potential under different types of pasture management in Brazil. Regional Environmental Change, 2022, 22, .	1.4	10
15	Soil dissolved organic carbon responses to sugarcane straw removal. Soil Use and Management, 2021, 37, 126-137.	2.6	15
16	Pastureland intensification and diversification in Brazil mediate soil bacterial community structure changes and soil C accumulation. Applied Soil Ecology, 2021, 160, 103858.	2.1	8
17	Land Use and Management Effects on Sustainable Sugarcane-Derived Bioenergy. Land, 2021, 10, 72.	1.2	43
18	The neglected contribution of mound-building termites on CH4 emissions in Brazilian pastures. Revista Brasileira De Zootecnia, 2021, 50, .	0.3	3

#	Article	IF	CITATIONS
19	Importance of sugarcane straw maintenance to prevent soil organic matter depletion in a Nitisol in the central-southern region of Brazil. Soil Research, 2021, 59, 119.	0.6	2
20	High Application Rates of Biochar to Mitigate N2O Emissions From a N-Fertilized Tropical Soil Under Warming Conditions. Frontiers in Environmental Science, 2021, 8, .	1.5	13
21	Soil health response to sugarcane straw removal in Brazil. Industrial Crops and Products, 2021, 163, 113315.	2.5	33
22	Moderate swidden agriculture inside dense evergreen ombrophilous forests can sustain soil chemical properties over 10–15Âyear cycles within the Brazilian Atlantic Forest. Catena, 2021, 200, 105117.	2.2	5
23	Epigeic fauna (with emphasis on ant community) response to land-use change for sugarcane expansion in Brazil. Acta Oecologica, 2021, 110, 103702.	0.5	9
24	Multilocation changes in soil carbon stocks from sugarcane straw removal for bioenergy production in Brazil. GCB Bioenergy, 2021, 13, 1099-1111.	2.5	9
25	Drivers of Organic Carbon Stocks in Different LULC History and along Soil Depth for a 30 Years Image Time Series. Remote Sensing, 2021, 13, 2223.	1.8	22
26	Deforestation and land use change mediate soil carbon changes in the eastern Brazilian Amazon. Regional Environmental Change, 2021, 21, 1.	1.4	6
27	Simulation of soil carbon changes due to conventional systems in the semi-arid region of Brazil: adaptation and validation of the century model. Carbon Management, 2021, 12, 399-410.	1.2	4
28	Predicting soil C changes after pasture intensification and diversification in Brazil. Catena, 2021, 202, 105238.	2.2	13
29	Soil biota shift with land use change from pristine rainforest and Savannah (Cerrado) to agriculture in southern Amazonia. Molecular Ecology, 2021, 30, 4899-4912.	2.0	10
30	Consequences of land-use change in Brazil's new agricultural frontier: A soil physical health assessment. Geoderma, 2021, 400, 115149.	2.3	24
31	Simulation of changes in C and N stocks with land use and cover in Amazon Forest-Cerrado transition environment. Geoderma, 2021, 404, 115388.	2.3	3
32	Nitric and nitrous oxide fluxes from intensifying crop agriculture in the seasonally dry tropical Amazon–Cerrado border region. , 2021, 4, e20169.		5
33	Processes that influence dissolved organic matter in the soil: a review. Scientia Agricola, 2020, 77, .	0.6	121
34	Sugarcane straw management for bioenergy: effects of global warming on greenhouse gas emissions and soil carbon storage. Mitigation and Adaptation Strategies for Global Change, 2020, 25, 559-577.	1.0	5
35	Soil microstructure alterations induced by land use change for sugarcane expansion in Brazil. Soil Use and Management, 2020, 36, 189-199.	2.6	11
36	Changes in soil phosphorus pool induced by pastureland intensification and diversification in Brazil. Science of the Total Environment, 2020, 703, 135463.	3.9	27

#	Article	IF	Citations
37	Emissivity of agricultural soil attributes in southeastern Brazil via terrestrial and satellite sensors. Geoderma, 2020, 361, 114038.	2.3	16
38	Biochar-based nitrogen fertilizers: Greenhouse gas emissions, use efficiency, and maize yield in tropical soils. Science of the Total Environment, 2020, 704, 135375.	3.9	68
39	Linking soil engineers, structural stability, and organic matter allocation to unravel soil carbon responses to land-use change. Soil Biology and Biochemistry, 2020, 150, 107998.	4.2	27
40	Trade-Offs between Sugarcane Straw Removal and Soil Organic Matter in Brazil. Sustainability, 2020, 12, 9363.	1.6	13
41	Straw Removal Effects on Sugarcane Root System and Stalk Yield. Agronomy, 2020, 10, 1048.	1.3	8
42	Tropical soybean yield response to reduced or zero phosphorus fertilization depends on soils. , 2020, 3, e20113.		2
43	Biochar Amendment Enhances Water Retention in a Tropical Sandy Soil. Agriculture (Switzerland), 2020, 10, 62.	1.4	19
44	Biochar and sugar cane filter cake interaction on physical and hydrological soil properties under tropical field conditions. Biochar, 2020, 2, 195-210.	6.2	7
45	Agrosilvopastoral Systems and Well-Managed Pastures Increase Soil Carbon Stocks in the Brazilian Cerrado. Rangeland Ecology and Management, 2020, 73, 776-785.	1.1	24
46	Temperature sensitivity of soil organic matter decomposition varies with biochar application and soil type. Pedosphere, 2020, 30, 336-342.	2.1	15
47	Near Infrared Spectroscopy and Principal Components Analysis for Investigation of Soils Submitted to Different Land Uses in the Brazilian Eastern Amazon. Revista Virtual De Quimica, 2020, 12, 51-62.	0.1	1
48	Sugarcane Straw Removal: Implications to Soil Fertility and Fertilizer Demand in Brazil. Bioenergy Research, 2019, 12, 888-900.	2.2	40
49	Does Sugarcane Straw Removal Change the Abundance of Soil Microbes?. Bioenergy Research, 2019, 12, 901-908.	2.2	13
50	Diffuse Reflectance Infrared Fourier Transform (DRIFT) Spectroscopy to Assess Decomposition Dynamics of Sugarcane Straw. Bioenergy Research, 2019, 12, 909-919.	2,2	7
51	How Much Sugarcane Straw is Needed for Covering the Soil?. Bioenergy Research, 2019, 12, 858-864.	2.2	18
52	Soil Bacterial Community Changes in Sugarcane Fields Under Straw Removal in Brazil. Bioenergy Research, 2019, 12, 830-842.	2.2	8
53	Carbon Balance in Sugarcane Areas Under Different Tillage Systems. Bioenergy Research, 2019, 12, 778-788.	2.2	10
54	Sustainable Sugarcane Straw Special Issue: Considerations for Brazilian Bioenergy Production. Bioenergy Research, 2019, 12, 746-748.	2.2	12

#	Article	IF	CITATIONS
55	Dynamic biochar effects on nitrogen use efficiency, crop yield and soil nitrous oxide emissions during a tropical wheat-growing season. Journal of Environmental Management, 2019, 252, 109638.	3.8	36
56	Decomposition of sugarcane straw: Basis for management decisions for bioenergy production. Biomass and Bioenergy, 2019, 122, 133-144.	2.9	35
57	Chemical, Physical, and Hydraulic Properties as Affected by One Year of Miscanthus Biochar Interaction with Sandy and Loamy Tropical Soils. Soil Systems, 2019, 3, 24.	1.0	13
58	Sugarcane Straw Blanket Management Effects on Plant Growth, Development, and Yield in Southeastern Brazil. Crop Science, 2019, 59, 1732-1744.	0.8	2
59	Effect of Biochar Particle Size on Physical, Hydrological and Chemical Properties of Loamy and Sandy Tropical Soils. Agronomy, 2019, 9, 165.	1.3	79
60	Prediction of Sugarcane Yield by Soil Attributes under Straw Removal Management. Agronomy Journal, 2019, 111, 14-23.	0.9	11
61	Is the expansion of sugarcane over pasturelands a sustainable strategy for Brazil's bioenergy industry?. Renewable and Sustainable Energy Reviews, 2019, 102, 346-355.	8.2	46
62	Decomposition dynamics altered by straw removal management in the sugarcane-expansion regions in Brazil. Soil Research, 2019, 57, 41.	0.6	13
63	Applying Soil Management Assessment Framework (SMAF) on short-term sugarcane straw removal in Brazil. Industrial Crops and Products, 2019, 129, 175-184.	2.5	36
64	A novel way of assessing C dynamics during urban organic waste composting and greenhouse gas emissions in tropical region. Bioresource Technology Reports, 2018, 3, 35-42.	1.5	15
65	Three-Year Soil Carbon and Nitrogen Responses to Sugarcane Straw Management. Bioenergy Research, 2018, 11, 249-261.	2.2	36
66	Phosphorus removal from eutrophic water using modified biochar. Science of the Total Environment, 2018, 633, 825-835.	3.9	100
67	Greenhouse gas emission responses to sugarcane straw removal. Biomass and Bioenergy, 2018, 113, 15-21.	2.9	37
68	Poultry manure and sugarcane straw biochars modified with MgCl2 for phosphorus adsorption. Journal of Environmental Management, 2018, 214, 36-44.	3.8	77
69	Consensus, uncertainties and challenges for perennial bioenergy crops and land use. GCB Bioenergy, 2018, 10, 150-164.	2.5	80
70	Sugarcane straw removal effects on plant growth and stalk yield. Industrial Crops and Products, 2018, 111, 794-806.	2.5	49
71	Prediction of Sugarcane Yield Based on NDVI and Concentration of Leaf-Tissue Nutrients in Fields Managed with Straw Removal. Agronomy, 2018, 8, 196.	1.3	21
72	A Theoretical Model for GHG Emissions Due to Biochar Application in Tropical Agricultural Soils. Agronomy Journal, 2018, 110, 2652-2663.	0.9	1

#	Article	IF	CITATIONS
73	Quantity and quality of soil organic matter as a sustainability index under different land uses in Eastern Amazon. Scientia Agricola, 2018, 75, 225-232.	0.6	13
74	Deep soils modify environmental consequences of increased nitrogen fertilizer use in intensifying Amazon agriculture. Scientific Reports, 2018, 8, 13478.	1.6	56
75	Reducing Amazon Deforestation through Agricultural Intensification in the Cerrado for Advancing Food Security and Mitigating Climate Change. Sustainability, 2018, 10, 989.	1.6	59
76	Greenhouse gas emissions from soil amended with agricultural residue biochars: Effects of feedstock type, production temperature and soil moisture. Biomass and Bioenergy, 2018, 117, 1-9.	2.9	44
77	Crop residue harvest for bioenergy production and its implications on soil functioning and plant growth: A review. Scientia Agricola, 2018, 75, 255-272.	0.6	185
78	Vinasse application and cessation of burning in sugarcane management can have positive impact on soil carbon stocks. PeerJ, 2018, 6, e5398.	0.9	6
79	Quantifying above and belowground biomass carbon inputs for sugar-cane production in Brazil. Soil Research, 2017, 55, 640.	0.6	8
80	Soil carbon and nitrogen stocks in sugarcane systems by Bayesian conditional autoregressive model $\hat{a} \in \mathbb{C}$ an unbiased prediction strategy. Carbon Management, 2017, 8, 207-214.	1.2	1
81	Methane emissions from sugarcane vinasse storage and transportation systems: Comparison between open channels and tanks. Atmospheric Environment, 2017, 159, 135-146.	1.9	20
82	Sugar cane straw left in the field during harvest: decomposition dynamics and composition changes. Soil Research, 2017, 55, 758.	0.6	25
83	Predicting soil C changes over sugarcane expansion in Brazil using the DayCent model. GCB Bioenergy, 2017, 9, 1436-1446.	2.5	42
84	Guidelines for the recovery of sugarcane straw from the field during harvesting. Biomass and Bioenergy, 2017, 96, 69-74.	2.9	41
85	C and N stocks are not impacted by land use change from Brazilian Savanna (Cerrado) to agriculture despite changes in soil fertility and microbial abundances. Journal of Plant Nutrition and Soil Science, 2017, 180, 436-445.	1.1	8
86	Soil organic and organomineral fractions as indicators of the effects of land management in conventional and organic sugar cane systems. Soil Research, 2017, 55, 145.	0.6	22
87	Sugarcane straw removal effects on Ultisols and Oxisols in south-central Brazil. Geoderma Regional, 2017, 11, 86-95.	0.9	41
88	Increasing Rates of Biochar Application to Soil Induce Stronger Negative Priming Effect on Soil Organic Carbon Decomposition. Agricultural Research, 2017, 6, 389-398.	0.9	21
89	Soil carbon stock changes under different land uses in the Amazon. Geoderma Regional, 2017, 10, 138-143.	0.9	34
90	Soil type and texture impacts on soil organic carbon storage in a sub-tropical agro-ecosystem. Geoderma, 2017, 286, 88-97.	2.3	46

#	Article	IF	Citations
91	Relating the visual soil structure status and the abundance of soil engineering invertebrates across land use change. Soil and Tillage Research, 2017, 173, 49-52.	2.6	20
92	Modelling SOC response to land use change and management practices in sugarcane cultivation in South-Central Brazil. Plant and Soil, 2017, 410, 483-498.	1.8	18
93	Assessing soil structural quality under Brazilian sugarcane expansion areas using Visual Evaluation of Soil Structure (VESS). Soil and Tillage Research, 2017, 173, 64-74.	2.6	52
94	Grassland management impacts on soil carbon stocks: a new synthesis. Ecological Applications, 2017, 27, 662-668.	1.8	406
95	Assessing labile organic carbon in soils undergoing land use change in Brazil: A comparison of approaches. Ecological Indicators, 2017, 72, 411-419.	2.6	37
96	Prediction and Mapping of Soil Attributes using Diffuse Reflectance Spectroscopy and Magnetic Susceptibility. Soil Science Society of America Journal, 2017, 81, 1450-1462.	1.2	16
97	Soil Organic Matter Responses to Anthropogenic Forest Disturbance and Land Use Change in the Eastern Brazilian Amazon. Sustainability, 2017, 9, 379.	1.6	51
98	Soil Organic Matter Quality in Jatropha spp. Plantations in Different Edaphoclimatic Conditions. Revista Brasileira De Ciencia Do Solo, 2017, 41, .	0.5	2
99	Assessing the greenhouse gas emissions of Brazilian soybean biodiesel production. PLoS ONE, 2017, 12, e0176948.	1.1	25
100	Comparação de métodos de amostragem para avaliação do sistema radicular da cana-de-açúcar. Revista De Ciencias AgrÃcolas, 2017, 34, 7.	0.4	4
101	Estoques de carbono e nitrog $ ilde{A}^a$ nio no solo devido a mudan $ ilde{A}$ sa do uso da terra em $ ilde{A}_i$ reas de cultivo de caf $ ilde{A}$ © em minas gerais. Coffee Science, 2017, 12, 30.	0.5	4
102	Effects of Biochar on the Emissions of Greenhouse Gases from Sugarcane Residues Applied to Soils. Agricultural Sciences, 2017, 08, 869-886.	0.2	7
103	Effect of Pyrolysis Temperature and Feedstock Type on Agricultural Properties and Stability of Biochars. Agricultural Sciences, 2017, 08, 914-933.	0.2	14
104	Atributos quÃmicos e qualidade da matéria orgânica do solo em sistemas de colheita de cana-de-açúcar com e sem queima. Pesquisa Agropecuaria Brasileira, 2016, 51, 1438-1448.	0.9	8
105	Activity of soil microbial biomass altered by land use in the southwestern Amazon. Bragantia, 2016, 75, 79-86.	1.3	9
106	Soil carbon changes in areas undergoing expansion of sugarcane into pastures in south-central Brazil. Agriculture, Ecosystems and Environment, 2016, 228, 38-48.	2.5	39
107	Loss of soil (macro)fauna due to the expansion of Brazilian sugarcane acreage. Science of the Total Environment, 2016, 563-564, 160-168.	3.9	64
108	Effects of feedstock type and slow pyrolysis temperature in the production of biochars on the removal of cadmium and nickel from water. Journal of Cleaner Production, 2016, 137, 965-972.	4.6	101

#	Article	IF	CITATIONS
109	A Soil Management Assessment Framework (SMAF) Evaluation of Brazilian Sugarcane Expansion on Soil Quality. Soil Science Society of America Journal, 2016, 80, 215-226.	1.2	73
110	Comparing how land use change impacts soil microbial catabolic respiration in Southwestern Amazon. Brazilian Journal of Microbiology, 2016, 47, 63-72.	0.8	15
111	Soil physical quality response to sugarcane expansion in Brazil. Geoderma, 2016, 267, 156-168.	2.3	114
112	Assessing the carbon footprint of beef cattle in Brazil: a case study with 22 farms in the State of Mato Grosso. Journal of Cleaner Production, 2016, 112, 2593-2600.	4.6	67
113	Molecular characterization of soil organic matter from native vegetation–pasture–sugarcane transitions in Brazil. Science of the Total Environment, 2016, 548-549, 450-462.	3.9	18
114	Phosphorus pools responses to land-use change for sugarcane expansion in weathered Brazilian soils. Geoderma, 2016, 265, 27-38.	2.3	76
115	Direct N ₂ O emission factors for synthetic Nâ€fertilizer and organic residues applied on sugarcane for bioethanol production in Centralâ€6outhern Brazil. GCB Bioenergy, 2016, 8, 269-280.	2.5	52
116	Soil Quality Indexing Strategies for Evaluating Sugarcane Expansion in Brazil. PLoS ONE, 2016, 11, e0150860.	1.1	110
117	Soil carbon, nitrogen and phosphorus changes under sugarcane expansion in Brazil. Science of the Total Environment, 2015, 515-516, 30-38.	3.9	63
118	Greenhouse gas emissions from sugarcane vinasse transportation by open channel: a case study in Brazil. Journal of Cleaner Production, 2015, 94, 102-107.	4.6	25
119	Improved pasture and herd management to reduce greenhouse gas emissions from a Brazilian beef production system. Livestock Science, 2015, 175, 101-112.	0.6	52
120	Net greenhouse gas emissions from manure management using anaerobic digestion technology in a beef cattle feedlot in Brazil. Science of the Total Environment, 2015, 505, 1018-1025.	3.9	20
121	Sugarcane expansion in Brazilian tropical soilsâ€"Effects of land use change on soil chemical attributes. Agriculture, Ecosystems and Environment, 2015, 211, 173-184.	2.5	49
122	Soil carbon, multiple benefits. Environmental Development, 2015, 13, 33-38.	1.8	75
123	Towards a representative assessment of methane and nitrous oxide emissions and mitigation options from manure management of beef cattle feedlots in Brazil. Mitigation and Adaptation Strategies for Global Change, 2015, 20, 425-438.	1.0	3
124	Greenhouse gas assessment of Brazilian soybean production: a case study of Mato Grosso State. Journal of Cleaner Production, 2015, 96, 418-425.	4.6	62
125	Simulation of management and soil interactions impacting <scp>SOC</scp> dynamics in sugarcane using the CENTURY Model. GCB Bioenergy, 2015, 7, 646-657.	2.5	22
126	Developing Cost-Effective Field Assessments of Carbon Stocks in Human-Modified Tropical Forests. PLoS ONE, 2015, 10, e0133139.	1.1	13

#	Article	IF	CITATIONS
127	Emissões de gases de efeito estufa pela deposição de palha de cana-de-açúcar sobre o solo. Bragantia, 2014, 73, 113-122.	1.3	12
128	Estoques de carbono e qualidade da matéria orgânica do solo em áreas cultivadas com cana-de-açðcar. Revista Brasileira De Ciencia Do Solo, 2014, 38, 1402-1410.	0.5	28
129	Measuring and modeling nitrous oxide and methane emissions from beef cattle feedlot manure management: First assessments under Brazilian condition. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2014, 49, 696-711.	0.7	14
130	Sugarcane straw management and soil attributes on alachlor and diuron sorption in highly weathered tropical soils. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2014, 49, 352-360.	0.7	18
131	A largeâ€scale field assessment of carbon stocks in humanâ€modified tropical forests. Global Change Biology, 2014, 20, 3713-3726.	4.2	300
132	Soil carbon stocks under oil palm plantations in Bahia State, Brazil. Biomass and Bioenergy, 2014, 62, 1-7.	2.9	17
133	Crop-pasture rotation: A strategy to reduce soil greenhouse gas emissions in the Brazilian Cerrado. Agriculture, Ecosystems and Environment, 2014, 183, 167-175.	2.5	83
134	Effect of no-tillage and amendments on carbon lability in tropical soils. Soil and Tillage Research, 2014, 143, 67-76.	2.6	13
135	Payback time for soil carbon and sugar-caneÂethanol. Nature Climate Change, 2014, 4, 605-609.	8.1	85
136	Meeting the global demand for biofuels in 2021 through sustainable land use change policy. Energy Policy, 2014, 69, 14-18.	4.2	103
137	Soil carbon stocks and changes after oil palm introduction in the Brazilian Amazon. GCB Bioenergy, 2013, 5, 384-390.	2.5	57
138	Soil greenhouse gas fluxes from vinasse application in Brazilian sugarcane areas. Geoderma, 2013, 200-201, 77-84.	2.3	89
139	Quantification of uncertainties associated with space-time estimates of short-term soil CO2 emissions in a sugar cane area. Agriculture, Ecosystems and Environment, 2013, 167, 33-37.	2.5	10
140	Prospects for land-use sustainability on the agricultural frontier of the Brazilian Amazon. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20120171.	1.8	55
141	A social and ecological assessment of tropical land uses at multiple scales: the Sustainable Amazon Network. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20120166.	1.8	133
142	Assessing soil carbon storage rates under no-tillage: Comparing the synchronic and diachronic approaches. Soil and Tillage Research, 2013, 134, 207-212.	2.6	38
143	Contrasting approaches for estimating soil carbon changes in Amazon and Cerrado biomes. Soil and Tillage Research, 2013, 133, 75-84.	2.6	29
144	N ₂ O emissions due to nitrogen fertilizer applications in two regions of sugarcane cultivation in Brazil. Environmental Research Letters, 2013, 8, 015013.	2.2	93

#	Article	IF	CITATIONS
145	Methods for the quantification of GHG emissions at the landscape level for developing countries in smallholder contexts. Environmental Research Letters, 2013, 8, 015019.	2.2	22
146	Carbon dioxide emissions under different soil tillage systems in mechanically harvested sugarcane. Environmental Research Letters, 2013, 8, 015014.	2.2	84
147	Quantifying soil carbon stocks and greenhouse gas fluxes in the sugarcane agrosystem: point of view. Scientia Agricola, 2013, 70, 361-368.	0.6	21
148	Brazilian beef cattle feedlot manure management: A country survey1. Journal of Animal Science, 2013, 91, 1811-1818.	0.2	27
149	Nitrous oxide emissions in agricultural soils: a review. Pesquisa Agropecuaria Tropical, 2013, 43, 322-338.	1.0	179
150	Spatial variability of soil CO2 emission in a sugarcane area characterized by secondary information. Scientia Agricola, 2013, 70, 195-203.	0.6	17
151	How much sugarcane trash should be left on the soil?. Scientia Agricola, 2013, 70, 1-1.	0.6	20
152	Landscape and soil regionalization in southern Brazilian Amazon and contiguous areas: methodology and relevance for ecological studies. Scientia Agricola, 2012, 69, 217-225.	0.6	4
153	Effect of sugarcane harvesting systems on soil carbon stocks in Brazil: an examination of existing data. European Journal of Soil Science, 2011, 62, 23-28.	1.8	117
154	Linking physical quality and CO2 emissions under long-term no-till and conventional-till in a subtropical soil in Brazil. Plant and Soil, 2011, 338, 5-15.	1.8	25
155	How can soil monitoring networks be used to improve predictions of organic carbon pool dynamics and CO2 fluxes in agricultural soils?. Plant and Soil, 2011, 338, 247-259.	1.8	61
156	Soil CO2 emission estimated by different interpolation techniques. Plant and Soil, 2011, 345, 187-194.	1.8	25
157	Historical carbon emissions and uptake from the agricultural frontier of the Brazilian Amazon. , 2011, 21, 750-763.		40
158	Inorganic nitrogen, microbial biomass and microbial activity of a sandy Brazilian Cerrado soil under different land uses. Agriculture, Ecosystems and Environment, 2010, 135, 161-167.	2.5	75
159	Changes in soil organic carbon storage under different agricultural management systems in the Southwest Amazon Region of Brazil. Soil and Tillage Research, 2010, 106, 177-184.	2.6	103
160	Simulation of sugarcane residue decomposition and aboveground growth. Plant and Soil, 2010, 326, 243-259.	1.8	33
161	Greenhouse gases emission from soil contaminated with automobile industry residue in Brazil. Plant and Soil, 2010, 333, 315-323.	1.8	2
162	Impact of pasture, agriculture and crop-livestock systems on soil C stocks in Brazil. Soil and Tillage Research, 2010, 110, 175-186.	2.6	125

#	Article	IF	CITATIONS
163	Soil organic carbon stock change due to land use activity along the agricultural frontier of the southwestern Amazon, Brazil, between 1970 and 2002. Global Change Biology, 2010, 16, 2775-2788.	4.2	45
164	Recovery of degraded pasture in Rondônia: macronutrients and productivity of brachiaria brizantha. Revista Brasileira De Ciencia Do Solo, 2010, 34, 1711-1720.	0.5	9
165	Greenhouse gas mitigation options in Brazil for land-use change, livestock and agriculture. Scientia Agricola, 2010, 67, 102-116.	0.6	55
166	Potencial de sequestro de carbono em diferentes biomas do Brasil. Revista Brasileira De Ciencia Do Solo, 2010, 34, 277-290.	0.5	77
167	The Amazon Frontier of Land-Use Change: Croplands and Consequences for Greenhouse Gas Emissions. Earth Interactions, 2010, 14, 1-24.	0.7	40
168	Greenhouse gas emissions from alternative futures of deforestation and agricultural management in the southern Amazon. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 19649-19654.	3.3	54
169	Net greenhouse gas fluxes in Brazilian ethanol production systems. GCB Bioenergy, 2010, 2, 37-44.	2.5	53
170	Agricultural expansion in the Brazilian state of Mato Grosso; implications for C stocks and greenhouse gas emissions. Environmental Science and Engineering, 2010, , 447-460.	0.1	2
171	Brazilian greenhouse gas emissions: the importance of agriculture and livestock. Scientia Agricola, 2009, 66, 831-843.	0.6	88
172	Rotação de culturas no sistema plantio direto em Tibagi (PR): II - Emissões de CO2 e N2O. Revista Brasileira De Ciencia Do Solo, 2009, 33, 1023-1029.	0.5	6
173	Rotação de culturas no sistema plantio direto em Tibagi (PR): I - Sequestro de carbono no solo. Revista Brasileira De Ciencia Do Solo, 2009, 33, 1013-1022.	0.5	13
174	The maintenance of soil fertility in Amazonian managed systems. Geophysical Monograph Series, 2009, , 311-336.	0.1	9
175	Soil Carbon Turnover Measurement by Physical Fractionation at a Forest-to-Pasture Chronosequence in the Brazilian Amazon. Ecosystems, 2009, 12, 1212-1221.	1.6	35
176	Carbon sequestration in agricultural soils in the Cerrado region of the Brazilian Amazon. Soil and Tillage Research, 2009, 103, 342-349.	2.6	102
177	Modeling soil organic carbon dynamics in Oxisols of Ibirub \tilde{A}_i (Brazil) with the Century Model. Soil and Tillage Research, 2009, 105, 33-43.	2.6	50
178	Effect of grassland management on soil carbon sequestration in Rondônia and Mato Grosso states, Brazil. Geoderma, 2009, 149, 84-91.	2.3	137
179	Soil carbon stocks under burned and unburned sugarcane in Brazil. Geoderma, 2009, 153, 347-352.	2.3	169
180	Cropping Systems, Carbon Sequestration and Erosion in Brazil: A Review., 2009,, 75-85.		5

#	Article	IF	Citations
181	Soil Organic Carbon Stocks of Rio Grande do Sul, Brazil. Soil Science Society of America Journal, 2009, 73, 975-982.	1.2	36
182	Nutrient limitations to secondary forest regrowth. Geophysical Monograph Series, 2009, , 299-309.	0.1	7
183	Simulation of Soil Carbon Dynamics under Sugarcane with the CENTURY Model. Soil Science Society of America Journal, 2009, 73, 802-811.	1.2	49
184	Conversion of cerrado into agricultural land in the south-western Amazon: carbon stocks and soil fertility. Scientia Agricola, 2009, 66, 233-241.	0.6	25
185	Wavelet analysis of MODIS time series to detect expansion and intensification of row-crop agriculture in Brazil. Remote Sensing of Environment, 2008, 112, 576-587.	4.6	338
186	Propriedades quÃmicas de um Neossolo Quartzarênico sob diferentes sistemas de manejo no Cerrado mato-grossense. Pesquisa Agropecuaria Brasileira, 2008, 43, 641-648.	0.9	34
187	Microbial Biomass in Native Amazonian Ecosystems and its Adaptation to Deforestation and Pasture Introduction and Management., 2008,, 247-264.		1
188	Nitrogen Dynamics in Forestry and Grassland Soils in the Amazon Region. Outlook on Agriculture, 2007, 36, 41-48.	1.8	2
189	Tropical agriculture and global warming: impacts and mitigation options. Scientia Agricola, 2007, 64, 83-99.	0.6	150
190	Changes of chemical properties in an oxisol after clearing of native Cerrado vegetation for agricultural use in Vilhena, Rondonia State, Brazil. Soil and Tillage Research, 2007, 96, 95-102.	2.6	26
191	National and sub-national assessments of soil organic carbon stocks and changes: The GEFSOC modelling system. Agriculture, Ecosystems and Environment, 2007, 122, 3-12.	2.5	85
192	The GEFSOC soil carbon modelling system: A tool for conducting regional-scale soil carbon inventories and assessing the impacts of land use change on soil carbon. Agriculture, Ecosystems and Environment, 2007, 122, 13-25.	2.5	64
193	Preparation of consistent soil data sets for modelling purposes: Secondary SOTER data for four case study areas. Agriculture, Ecosystems and Environment, 2007, 122, 26-34.	2.5	37
194	Simulating SOC changes in 11 land use change chronosequences from the Brazilian Amazon with RothC and Century models. Agriculture, Ecosystems and Environment, 2007, 122, 46-57.	2.5	76
195	Predicted soil organic carbon stocks and changes in the Brazilian Amazon between 2000 and 2030. Agriculture, Ecosystems and Environment, 2007, 122, 58-72.	2.5	115
196	An increased understanding of soil organic carbon stocks and changes in non-temperate areas: National and global implications. Agriculture, Ecosystems and Environment, 2007, 122, 125-136.	2.5	21
197	Climate change and its impact on soil and vegetation carbon storage in Kenya, Jordan, India and Brazil. Agriculture, Ecosystems and Environment, 2007, 122, 114-124.	2.5	66
198	Short-term changes in nitrogen availability, gas fluxes (CO2, NO, N2O) and microbial biomass after tillage during pasture re-establishment in Rondônia, Brazil. Soil and Tillage Research, 2007, 96, 250-259.	2.6	26

#	Article	IF	CITATIONS
199	Interrelationships Among Soil Total C and N, Microbial Biomass, Trace Gas Fluxes, and Internal N-Cycling in Soils Under Pasture of the Amazon Region. Agroecology and Sustainable Food Systems, 2006, 27, 45-69.	0.9	19
200	Cropping systems, carbon sequestration and erosion in Brazil, a review. Agronomy for Sustainable Development, 2006, 26, 1-8.	2.2	141
201	Recent History of the Agriculture of the Brazilian Amazon Basin. Outlook on Agriculture, 2005, 34, 215-223.	1.8	10
202	Modeling changes in soil organic matter in Amazon forest to pasture conversion with the Century model. Global Change Biology, 2004, 10, 815-832.	4.2	89
203	Combining Soil C and N Spatial Variability and Modeling Approaches for Measuring and Monitoring Soil Carbon Sequestration. Environmental Management, 2004, 33, S274.	1.2	8
204	Assessment of soil property spatial variation in an Amazon pasture: basis for selecting an agronomic experimental area. Geoderma, 2004, 123, 51-68.	2.3	57
205	Carbon cycling and sequestration opportunities in South America: the case of Brazil. Soil Use and Management, 2004, 20, 248-254.	2.6	48
206	Acid rain and nitrogen deposition in a sub-tropical watershed (Piracicaba): ecosystem consequences. Environmental Pollution, 2003, 121, 389-399.	3.7	43
207	Modeling Soil Carbon from Forest and Pasture Ecosystems of Amazon, Brazil. Soil Science Society of America Journal, 2003, 67, 1879-1887.	1.2	85
208	Pasture mapping by classification of Landsat TM images. Analysis of the spectral behaviour of the pasture class in a real medium-scale environment: The case of the Piracicaba Catchment (12 400 km 2,) Tj ETQq0	O1Q3rgBT /	'Owerlock 10
209	GIS EROSION RISK ASSESSMENT OF THE PIRACICABA RIVER BASIN, SOUTHEASTERN BRAZIL. Mapping Sciences and Remote Sensing, 2001, 38, 157-171.	0.0	25
210	Depth assessed and up-scaling of single case studies might overestimate the role of C sequestration by pastures in the commitments of Brazil's low-carbon agriculture plan. Carbon Management, 0, , 1-10.	1.2	1