Qinghong Zhang

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/4489775/qinghong-zhang-publications-by-year.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

183
papers

8,822
citations

46
h-index

89
g-index

189
ext. papers

9.9
ext. citations

9.9
L-index

#	Paper	IF	Citations
183	Highly integrated fiber-shaped thermoelectric generators with radially heterogeneous interlayers. <i>Nano Energy</i> , 2022 , 95, 107055	17.1	2
182	Water-resistant and underwater adhesive ion-conducting gel for motion-robust bioelectric monitoring. <i>Chemical Engineering Journal</i> , 2022 , 431, 134012	14.7	6
181	Electrodeposited ternary AgCuO2 nanocrystalline films as hole transport layers for inverted perovskite solar cells. <i>Journal of Alloys and Compounds</i> , 2022 , 890, 161879	5.7	2
180	Electrochemical Actuators with Multicolor Changes and Multidirectional Actuation Small, 2022, e2107	778	3
179	A portable ascorbic acid in sweat analysis system based on highly crystalline conductive nickel-based metal-organic framework (Ni-MOF) <i>Journal of Colloid and Interface Science</i> , 2022 , 616, 320	5-3-37	5
178	Ultra-stable ionic-liquid-based electrochromism enabled by metal-organic frameworks. <i>Cell Reports Physical Science</i> , 2022 , 100866	6.1	2
177	Multifunctional Mechanical Sensing Electronic Device Based on Triboelectric Anisotropic Crumpled Nanofibrous Mats. <i>ACS Applied Materials & Device Based on Triboelectric Anisotropic Crumpled Nanofibrous Mats. ACS Applied Materials & Device Based on Triboelectric Anisotropic Crumpled Nanofibrous Mats. ACS Applied Materials & Device Based on Triboelectric Anisotropic Crumpled Nanofibrous Mats. ACS Applied Materials & Device Based on Triboelectric Anisotropic Crumpled Nanofibrous Mats. ACS Applied Materials & Device Based on Triboelectric Anisotropic Crumpled Nanofibrous Mats. ACS Applied Materials & Device Based on Triboelectric Anisotropic Crumpled Nanofibrous Mats. ACS Applied Materials & Device Based on Triboelectric Anisotropic Crumpled Nanofibrous Mats. ACS Applied Materials & Device Based on Triboelectric Anisotropic Crumpled Nanofibrous Mats. ACS Applied Materials & Device Based on Triboelectric Anisotropic Crumpled Nanofibrous Mats. ACS Applied Materials & Device Based On Triboelectric Anisotropic Crumpled Nanofibrous Mats. ACS Applied Materials & Device Based On Triboelectric Anisotropic Crumpled Nanofibrous Mats. ACS Applied Materials & Device Based On Triboelectric Anisotropic Crumpled Nanofibrous Mats. ACS Applied Materials & Device Based On Triboelectric Anisotropic Crumpled Nanofibrous Mats. ACS Applied Materials & Device Based On Triboelectric Anisotropic Crumpled Nanofibrous Mats. ACS Applied Materials & Device Based On Triboelectric Anisotropic Crumpled Nanofibrous Materials & Device Based On Triboelectric Anisotropic Crumpled Nanofibrous Materials & Device Based On Triboelectric Anisotropic Crumpled Nanofibrous Materials & Device Based On Triboelectric Anisotropic Crumpled Nanofibrous Materials & Device Based On Triboelectric Anisotropic Crumpled Nanofibrous Materials & Device Based On Triboelectric Anisotropic Crumpled Nanofibrous Materials & Device Based On Triboelectric Anisotropic Crumpled Nanofibrous Materials & Device Based On Triboelectric Crumpled Nanofibrous Materials & Device Based On </i>	9.5	2
176	Flexible and high-performance electrochromic devices enabled by self-assembled 2D TiO/MXene heterostructures. <i>Nature Communications</i> , 2021 , 12, 1587	17.4	44
175	Wicking-Polarization-Induced Water Cluster Size Effect on Triboelectric Evaporation Textiles. <i>Advanced Materials</i> , 2021 , 33, e2007352	24	21
174	Abrasion Resistant/Waterproof Stretchable Triboelectric Yarns Based on Fermat Spirals. <i>Advanced Materials</i> , 2021 , 33, e2100782	24	20
173	Dual Covalent Cross-Linking Networks in Polynorbornene: Comparison of Shape Memory Performance. <i>Materials</i> , 2021 , 14,	3.5	1
172	NiCoNiCoO2/carbon hollow nanocages for non-enzyme glucose detection. <i>Electrochimica Acta</i> , 2021 , 381, 138259	6.7	4
171	Dielectrophoretic Assembly of Carbon Nanotube Chains in Aqueous Solution. <i>Advanced Fiber Materials</i> , 2021 , 3, 312	10.9	O
170	Integrated Ionic-Additive Assisted Wet-Spinning of Highly Conductive and Stretchable PEDOT:PSS Fiber for Fibrous Organic Electrochemical Transistors. <i>Advanced Electronic Materials</i> , 2021 , 7, 2100231	6.4	3
169	Tuning the reactivity of PbI2 film via monolayer Ti3C2Tx MXene for two-step-processed CH3NH3PbI3 solar cells. <i>Chemical Engineering Journal</i> , 2021 , 417, 127912	14.7	12
168	Atomic layer deposition SiO films over dental ZrO towards strong adhesive to resin. <i>Journal of the Mechanical Behavior of Biomedical Materials</i> , 2021 , 114, 104197	4.1	2
167	A highly integrated sensing paper for wearable electrochemical sweat analysis. <i>Biosensors and Bioelectronics</i> , 2021 , 174, 112828	11.8	35

(2020-2021)

166	Mechanical design of brush coating technology for the alignment of one-dimension nanomaterials. Journal of Colloid and Interface Science, 2021 , 583, 188-195	9.3	5
165	Scalable fluid-spinning nanowire-based inorganic semiconductor yarns for electrochromic actuators. <i>Materials Horizons</i> , 2021 , 8, 1711-1721	14.4	7
164	Ultra-stretchable, self-adhesive, transparent, and ionic conductive organohydrogel for flexible sensor. <i>APL Materials</i> , 2021 , 9, 011101	5.7	9
163	Independent dual-responsive Janus chromic fibers. Science China Materials, 2021, 64, 1770-1779	7.1	3
162	Grain Size and Interface Modification via Cesium Carbonate Post-Treatment for Efficient SnO2-Based Planar Perovskite Solar Cells. <i>ACS Applied Energy Materials</i> , 2021 , 4, 7002-7011	6.1	13
161	High power factor n-type Ag2Se/SWCNTs hybrid film for flexible thermoelectric generator. <i>Journal Physics D: Applied Physics</i> , 2021 , 54, 434004	3	1
160	Self-Powered Interactive Fiber Electronics with Visual-Digital Synergies. <i>Advanced Materials</i> , 2021 , 33, e2104681	24	13
159	Core-shell structured SiO@ZrO@SiO filler for radiopacity and ultra-low shrinkage dental composite resins. <i>Journal of the Mechanical Behavior of Biomedical Materials</i> , 2021 , 121, 104593	4.1	4
158	Continuous preparation of dual-responsive sensing fibers for smart textiles. <i>Journal of Colloid and Interface Science</i> , 2021 , 597, 215-222	9.3	1
157	High performance stretchable fibrous supercapacitors and flexible strain sensors based on CNTs/MXene-TPU hybrid fibers. <i>Electrochimica Acta</i> , 2021 , 395, 139141	6.7	10
156	Anion effect on properties of Zn-doped CH3NH3PbI3 based perovskite solar cells. <i>Solar Energy Materials and Solar Cells</i> , 2021 , 233, 111400	6.4	2
155	Interfacial Modification via a 1,4-Butanediamine-Based 2D Capping Layer for Perovskite Solar Cells with Enhanced Stability and Efficiency ACS Applied Materials & Enhanced Stability and Efficiency ACS Applied Materials & Enhanced Stability and Efficiency ACS Applied Materials & Enhanced Stability and Efficiency	9.5	6
154	Synergistic Effect of ,-Dimethylformamide and Hydrochloric Acid on the Growth of MAPbI Perovskite Films for Solar Cells. <i>ACS Omega</i> , 2020 , 5, 32295-32304	3.9	1
153	High Volumetric Energy Density Asymmetric Fibrous Supercapacitors with Coaxial Structure Based on Graphene/MnO2 Hybrid Fibers. <i>ChemElectroChem</i> , 2020 , 7, 4641-4648	4.3	5
152	Continuously Processed, Long Electrochromic Fibers with Multi-Environmental Stability. <i>ACS Applied Materials & District Materials & Di</i>	9.5	19
151	Skeleton-Structure WS@CNT Thin-Film Hybrid Electrodes for High-Performance Quasi-Solid-State Flexible Supercapacitors. <i>Frontiers in Chemistry</i> , 2020 , 8, 442	5	10
150	Thermal and Humidity Management for Next-Generation Textiles 2020, 163-181		
149	Facilitating Interfacial Stability Via Bilayer Heterostructure Solid Electrolyte Toward High-energy, Safe and Adaptable Lithium Batteries. <i>Advanced Energy Materials</i> , 2020 , 10, 2000709	21.8	28

148	Highly Integrable Thermoelectric Fiber. ACS Applied Materials & amp; Interfaces, 2020, 12, 33297-33304	9.5	26
147	Flexible 3D Porous MoS2/CNTs Architectures with ZT of 0.17 at Room Temperature for Wearable Thermoelectric Applications. <i>Advanced Functional Materials</i> , 2020 , 30, 2002508	15.6	15
146	Fluorinated metal-organic framework as bifunctional filler toward highly improving output performance of triboelectric nanogenerators. <i>Nano Energy</i> , 2020 , 70, 104517	17.1	47
145	A kirigami-inspired island-chain design for wearable moistureproof perovskite solar cells with high stretchability and performance stability. <i>Nanoscale</i> , 2020 , 12, 3646-3656	7.7	16
144	Solution-processed p-type nanocrystalline CoO films for inverted mixed perovskite solar cells. Journal of Colloid and Interface Science, 2020 , 573, 78-86	9.3	8
143	Facile synthesis of 3D hierarchical micro-/nanostructures in capillaries for efficient capture of circulating tumor cells. <i>Journal of Colloid and Interface Science</i> , 2020 , 575, 108-118	9.3	4
142	Spray-coated monodispersed SnO2 microsphere films as scaffold layers for efficient mesoscopic perovskite solar cells. <i>Journal of Power Sources</i> , 2020 , 448, 227405	8.9	41
141	A self-healing, Na+ sensitive and neuron-compatible fiber. Chemical Engineering Journal, 2020, 386, 1240	011487	1
140	Additional-Heating-Enhanced Large-Scale Metallic Molybdenum Disulfide Nanosheet Exfoliation for Free-Standing Films and Flexible High-Performance Supercapacitors. <i>ChemNanoMat</i> , 2020 , 6, 267-27	· 3 ·5	3
139	Capillary force driven printing of asymmetric Na-ion micro-supercapacitors. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 22083-22089	13	4
138	Thermochromic Hydrogel-Functionalized Textiles for Synchronous Visual Monitoring of On-Demand Drug Release. <i>ACS Applied Materials & Description</i> (12), 51225-51235	9.5	18
137	Anatase TiO2 nanorod arrays as high-performance electron transport layers for perovskite solar cells. <i>Journal of Alloys and Compounds</i> , 2020 , 849, 156629	5.7	10
136	Stretchable electrothermochromic fibers based on hierarchical porous structures with electrically conductive dual-pathways. <i>Science China Materials</i> , 2020 , 63, 2582-2589	7.1	5
135	Large-Grained Perovskite Films Enabled by One-Step Meniscus-Assisted Solution Printing of Cross-Aligned Conductive Nanowires for Biodegradable Flexible Solar Cells. <i>Advanced Energy Materials</i> , 2020 , 10, 2001185	21.8	19
134	Composite Solid Electrolytes: Facilitating Interfacial Stability Via Bilayer Heterostructure Solid Electrolyte Toward High-energy, Safe and Adaptable Lithium Batteries (Adv. Energy Mater. 31/2020). Advanced Energy Materials, 2020, 10, 2070131	21.8	11
133	Metal D rganic Framework-Derived Nickel/Cobalt-Based Nanohybrids for Sensing Non-Enzymatic Glucose. <i>ChemElectroChem</i> , 2020 , 7, 4446-4452	4.3	13
132	Transparent Metal-Organic Framework-Based Gel Electrolytes for Generalized Assembly of Quasi-Solid-State Electrochromic Devices. <i>ACS Applied Materials & Devices</i> , 12, 42955-4296	P·5	12
131	MXene-Coated Air-Permeable Pressure-Sensing Fabric for Smart Wear. <i>ACS Applied Materials & amp;</i> Interfaces, 2020 , 12, 46446-46454	9.5	42

(2019-2020)

130	Controlled preparation of Bi2O3/MgAl mixed metal oxides composites with enhanced visible light photocatalytic performance. <i>Research on Chemical Intermediates</i> , 2020 , 46, 5009-5021	2.8	6
129	Stable Hydrogel Electrolytes for Flexible and Submarine-Use Zn-Ion Batteries. <i>ACS Applied Materials</i> & Amp; Interfaces, 2020 , 12, 46005-46014	9.5	29
128	Highly fluorinated polyimide gate dielectric for fully transparent aqueous precursor derived In I In oxide thin-film transistors. <i>Journal of Materials Science</i> , 2020 , 55, 15919-15929	4.3	2
127	Microfluidic spinning of editable polychromatic fibers. <i>Journal of Colloid and Interface Science</i> , 2020 , 558, 115-122	9.3	12
126	Highly efficient flexible perovskite solar cells made via ultrasonic vibration assisted room temperature cold sintering. <i>Chemical Engineering Journal</i> , 2020 , 394, 124887	14.7	14
125	Regulation of carbon content in MOF-derived hierarchical-porous NiO@C films for high-performance electrochromism. <i>Materials Horizons</i> , 2019 , 6, 571-579	14.4	49
124	1T-Molybdenum disulfide/reduced graphene oxide hybrid fibers as high strength fibrous electrodes for wearable energy storage. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 3143-3149	13	30
123	ZnStdStaON nanocomposites with enhanced stability and photocatalytic hydrogen evolution activity. <i>Journal of Sol-Gel Science and Technology</i> , 2019 , 91, 82-91	2.3	10
122	Controlling the transformation of intermediate phase under near-room temperature for improving the performance of perovskite solar cells. <i>Solar Energy</i> , 2019 , 186, 225-232	6.8	7
121	High-Performance Flexible Thermoelectric Devices Based on All-Inorganic Hybrid Films for Harvesting Low-Grade Heat. <i>Advanced Functional Materials</i> , 2019 , 29, 1900304	15.6	66
120	Enhancement in photoelectric performance of flexible perovskite solar cells by thermal nanoimprint pillar-like nanostructures. <i>Materials Letters</i> , 2019 , 248, 16-19	3.3	10
119	Solvatochromic structural color fabrics with favorable wearability properties. <i>Journal of Materials Chemistry C</i> , 2019 , 7, 4855-4862	7.1	6
118	Light-driven artificial muscles based on electrospun microfiber yarns. <i>Science China Technological Sciences</i> , 2019 , 62, 965-970	3.5	7
117	Highly Aligned Molybdenum Trioxide Nanobelts for Flexible Thin-Film Transistors and Supercapacitors: Macroscopic Assembly and Anisotropic Electrical Properties. <i>ACS Applied Nano Materials</i> , 2019 , 2, 1466-1471	5.6	10
116	Cladding nanostructured AgNWs-MoS2 electrode material for high-rate and long-life transparent in-plane micro-supercapacitor. <i>Energy Storage Materials</i> , 2019 , 16, 212-219	19.4	72
115	Advanced Functional Fiber and Smart Textile. <i>Advanced Fiber Materials</i> , 2019 , 1, 3-31	10.9	87
114	Infrared-Radiation-Enhanced Nanofiber Membrane for Sky Radiative Cooling of the Human Body. <i>ACS Applied Materials & District Research</i> , 11, 44673-44681	9.5	37
113	Sheath-run artificial muscles. <i>Science</i> , 2019 , 365, 150-155	33.3	120

112	Continuous and scalable manufacture of amphibious energy yarns and textiles. <i>Nature Communications</i> , 2019 , 10, 868	17.4	75
111	Highly efficient walking perovskite solar cells based on thermomechanical polymer films. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 26154-26161	13	10
110	All-fiber tribo-ferroelectric synergistic electronics with high thermal-moisture stability and comfortability. <i>Nature Communications</i> , 2019 , 10, 5541	17.4	61
109	Flexible photodetector based on cotton coated with reduced graphene oxide and sulfur and nitrogen co-doped graphene quantum dots. <i>Journal of Materials Science</i> , 2019 , 54, 3242-3251	4.3	9
108	Earth-Abundant Oxygen Electrocatalysts for Alkaline Anion-Exchange-Membrane Water Electrolysis: Effects of Catalyst Conductivity and Comparison with Performance in Three-Electrode Cells. <i>ACS Catalysis</i> , 2019 , 9, 7-15	13.1	89
107	Dual-Mechanism and Multimotion Soft Actuators Based on Commercial Plastic Film. <i>ACS Applied Materials & District Actuation </i>	9.5	41
106	Molecular-channel driven actuator with considerations for multiple configurations and color switching. <i>Nature Communications</i> , 2018 , 9, 590	17.4	108
105	A single-walled carbon nanotubes/poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate)/copper hexacyanoferrate hybrid film for high-volumetric performance flexible supercapacitors. <i>Journal of Power Sources</i> ,	8.9	26
104	Grain engineering by ultrasonic substrate vibration post-treatment of wet perovskite films for annealing-free, high performance, and stable perovskite solar cells. <i>Nanoscale</i> , 2018 , 10, 8526-8535	7.7	38
103	Ion-Transport Design for High-Performance Na-Based Electrochromics. ACS Nano, 2018, 12, 3759-3768	16.7	83
102	All-fiber hybrid piezoelectric-enhanced triboelectric nanogenerator for wearable gesture monitoring. <i>Nano Energy</i> , 2018 , 48, 152-160	17.1	231
101	Modifying Perovskite Films with Polyvinylpyrrolidone for Ambient-Air-Stable Highly Bendable Solar Cells. <i>ACS Applied Materials & Discourse Cells. ACS ACS ACS ACS ACS ACS ACS ACS ACS ACS</i>	9.5	40
100	Enhanced immunofluorescence detection of a protein marker using a PAA modified ZnO nanorod array-based microfluidic device. <i>Nanoscale</i> , 2018 , 10, 17663-17670	7.7	19
99	Mesoporous Pt/TiO2-xNx nanoparticles with less than 10 nm and high specific surface area as visible light hydrogen evolution photocatalysts. <i>Journal of Sol-Gel Science and Technology</i> , 2018 , 87, 230)- 2 :39	2
98	High-performance solar cells with induced crystallization of perovskite by an evenly distributed CdSe quantum dots seed-mediated underlayer. <i>Journal of Power Sources</i> , 2018 , 376, 46-54	8.9	29
97	Lattice-contraction triggered synchronous electrochromic actuator. <i>Nature Communications</i> , 2018 , 9, 4798	17.4	52
96	SnO2 nanorod arrays with tailored area density as efficient electron transport layers for perovskite solar cells. <i>Journal of Power Sources</i> , 2018 , 402, 460-467	8.9	30
95	Antisolvent-Derived Intermediate Phases for Low-Temperature Flexible Perovskite Solar Cells. <i>ACS</i> Applied Energy Materials. 2018 , 1, 6477-6486	6.1	13

(2017-2018)

94	Wearable Thermoelectric Devices Based on Au-Decorated Two-Dimensional MoS. <i>ACS Applied Materials & Design Series</i> , 2018, 10, 33316-33321	9.5	32
93	Design and Mechanisms of Asymmetric Supercapacitors. <i>Chemical Reviews</i> , 2018 , 118, 9233-9280	68.1	1396
92	Surface modification of quartz fibres for dental composites through a sol-gel process. <i>Materials Science and Engineering C</i> , 2017 , 74, 21-26	8.3	17
91	Liquid-liquid interface assisted synthesis of SnO 2 nanorods with tunable length for enhanced performance in dye-sensitized solar cells. <i>Electrochimica Acta</i> , 2017 , 227, 49-60	6.7	25
90	Self-powered multifunctional UV and IR photodetector as an artificial electronic eye. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 1436-1442	7.1	33
89	1-Ethyl-3-methylimidazolium tetrafluoroborate-doped high ionic conductivity gel electrolytes with reduced anodic reaction potentials for electrochromic devices. <i>Materials and Design</i> , 2017 , 118, 279-285	58.1	30
88	S, N Co-Doped Graphene Quantum Dot/TiO Composites for Efficient Photocatalytic Hydrogen Generation. <i>Nanoscale Research Letters</i> , 2017 , 12, 400	5	68
87	Calligraphy-inspired brush written foldable supercapacitors. <i>Nano Energy</i> , 2017 , 38, 428-437	17.1	21
86	Solution-Processed Porous Tungsten Molybdenum Oxide Electrodes for Energy Storage Smart Windows. <i>Advanced Materials Technologies</i> , 2017 , 2, 1700047	6.8	32
85	A remote controllable fiber-type near-infrared light-responsive actuator. <i>Chemical Communications</i> , 2017 , 53, 11118-11121	5.8	36
84	Synthesis of Mesoporous (Ga1\(\text{MZnx} \) (N1\(\text{MOx} \) Using Layered Double Hydroxides as Precursors for Enhanced Visible-Light Driven H2 Production. <i>Chinese Journal of Chemistry</i> , 2017 , 35, 196-202	4.9	4
83	Aluminum-Ion-Intercalation Supercapacitors with Ultrahigh Areal Capacitance and Highly Enhanced Cycling Stability: Power Supply for Flexible Electrochromic Devices. <i>Small</i> , 2017 , 13, 1700380	11	76
82	Solvent vapor annealing of oriented PbI2 films for improved crystallization of perovskite films in the air. <i>Solar Energy Materials and Solar Cells</i> , 2017 , 166, 167-175	6.4	16
81	A strong and flexible electronic vessel for real-time monitoring of temperature, motions and flow. <i>Nanoscale</i> , 2017 , 9, 17821-17828	7.7	12
8o	Ultrathin, Washable, and Large-Area Graphene Papers for Personal Thermal Management. <i>Small</i> , 2017 , 13, 1702645	11	98
79	Flexible quasi-solid-state planar micro-supercapacitor based on cellular graphene films. <i>Materials Horizons</i> , 2017 , 4, 1145-1150	14.4	150
78	A flexible metallic actuator using reduced graphene oxide as a multifunctional component. <i>Nanoscale</i> , 2017 , 9, 12963-12968	7.7	17
77	A wearable, fibroid, self-powered active kinematic sensor based on stretchable sheath-core structural triboelectric fibers. <i>Nano Energy</i> , 2017 , 39, 673-683	17.1	53

76	Fabrication of magnetic field induced structural colored films with tunable colors and its application on security materials. <i>Journal of Colloid and Interface Science</i> , 2017 , 485, 18-24	9.3	20
75	Reduced graphene oxide functionalized stretchable and multicolor electrothermal chromatic fibers. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 11448-11453	7.1	31
74	Prepolymerization-assisted fabrication of an ultrathin immobilized layer to realize a semi-embedded wrinkled AgNW network for a smart electrothermal chromatic display and actuator. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 9778-9785	7.1	34
73	Facile fabrication of magnetically responsive PDMS fiber for camouflage. <i>Journal of Colloid and Interface Science</i> , 2016 , 483, 11-16	9.3	18
72	An Elastic Transparent Conductor Based on Hierarchically Wrinkled Reduced Graphene Oxide for Artificial Muscles and Sensors. <i>Advanced Materials</i> , 2016 , 28, 9491-9497	24	121
71	Hydrophobic SiO2 Electret Enhances the Performance of Poly(vinylidene fluoride) Nanofiber-Based Triboelectric Nanogenerator. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 26600-26608	3.8	20
70	3D Freeze-Casting of Cellular Graphene Films for Ultrahigh-Power-Density Supercapacitors. <i>Advanced Materials</i> , 2016 , 28, 6719-26	24	335
69	Hydrophobic coating over a CH3NH3PbI3 absorbing layer towards air stable perovskite solar cells. Journal of Materials Chemistry C, 2016 , 4, 6848-6854	7.1	41
68	Three-dimensional ordered titanium dioxide-zirconium dioxide film-based microfluidic device for efficient on-chip phosphopeptide enrichment. <i>Journal of Colloid and Interface Science</i> , 2016 , 478, 227-3	5 ^{9·3}	10
67	An electrically controllable all-solid-state Au@graphene oxide actuator. <i>Chemical Communications</i> , 2016 , 52, 5816-9	5.8	7
66	A novel efficient ZnO/Zn(OH)F nanofiber arrays-based versatile microfluidic system for the applications of photocatalysis and histidine-rich protein separation. <i>Sensors and Actuators B: Chemical</i> , 2016 , 229, 281-287	8.5	29
65	Visibly vapor-responsive structurally colored carbon fibers prepared by an electrophoretic deposition method. <i>RSC Advances</i> , 2016 , 6, 16319-16322	3.7	8
64	Fluoroalkylsilane-Modified Textile-Based Personal Energy Management Device for Multifunctional Wearable Applications. <i>ACS Applied Materials & App</i>	9.5	95
63	Spray coated ultrathin films from aqueous tungsten molybdenum oxide nanoparticle ink for high contrast electrochromic applications. <i>Journal of Materials Chemistry C</i> , 2016 , 4, 33-38	7.1	53
62	Aqueous synthesis of high bright and tunable near-infrared AgInSe2-ZnSe quantum dots for bioimaging. <i>Journal of Colloid and Interface Science</i> , 2016 , 463, 1-7	9.3	42
61	Biocompatible and colloidally stabilized mPEG-PE/calcium phosphate hybrid nanoparticles loaded with siRNAs targeting tumors. <i>Oncotarget</i> , 2016 , 7, 2855-66	3.3	16
60	Flexible and thermostable thermoelectric devices based on large-area and porous all-graphene films. <i>Carbon</i> , 2016 , 107, 146-153	10.4	33
59	Lightweight, highly bendable and foldable electrochromic films based on all-solution-processed bilayer nanowire networks. <i>Journal of Materials Chemistry C</i> , 2016 , 4, 5849-5857	7.1	26

(2015-2015)

58	Enhanced fluorescence and heat dissipation of calcium titanate red phosphor based on silver coating. <i>Journal of Colloid and Interface Science</i> , 2015 , 459, 44-52	9.3	7
57	Rapid formation of superelastic 3D reduced graphene oxide networks with simultaneous removal of HI utilizing NIR irradiation. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 9882-9889	13	12
56	A multi-responsive water-driven actuator with instant and powerful performance for versatile applications. <i>Scientific Reports</i> , 2015 , 5, 9503	4.9	75
55	Graphene-based materials for flexible supercapacitors. <i>Chemical Society Reviews</i> , 2015 , 44, 3639-65	58.5	851
54	Laser irradiated self-supporting and flexible 3-dimentional graphene-based film electrode with promising electrochemical properties. <i>RSC Advances</i> , 2015 , 5, 47074-47079	3.7	9
53	Controllable construction of micro/nanostructured NiO arrays in confined microchannels via microfluidic chemical fabrication for highly efficient and specific absorption of abundant proteins. <i>Journal of Materials Chemistry B</i> , 2015 , 3, 4272-4281	7.3	14
52	Flow Effects on the Controlled Growth of Nanostructured Networks at Microcapillary Walls for Applications in Continuous Flow Reactions. <i>ACS Applied Materials & Description Applications and Provided Materials & Description Applications and Provided Materials & Description Applications and Provided Materials & Description Application & Description Application & Description & Des</i>	9.5	10
51	Graphene-carbon nanotube papers for energy conversion and storage under sunlight and heat. <i>Carbon</i> , 2015 , 95, 150-156	10.4	16
50	Origami-inspired active graphene-based paper for programmable instant self-folding walking devices. <i>Science Advances</i> , 2015 , 1, e1500533	14.3	260
49	High-performance all-solid-state yarn supercapacitors based on porous graphene ribbons. <i>Nano Energy</i> , 2015 , 12, 26-32	17.1	92
48	Construction of hydrated tungsten trioxide nanosheet films for efficient electrochromic performance. <i>RSC Advances</i> , 2015 , 5, 196-201	3.7	28
47	One-pot Hydrothermal Synthesis of N-Doped Carbon Quantum Dots Using the Waste of Shrimp for Hydrogen Evolution from Formic Acid. <i>Chemistry Letters</i> , 2015 , 44, 241-243	1.7	18
46	Enhanced Power Output of a Triboelectric Nanogenerator Composed of Electrospun Nanofiber Mats Doped with Graphene Oxide. <i>Scientific Reports</i> , 2015 , 5, 13942	4.9	89
45	Facile fabrication of a magnetically induced structurally colored fiber and its strain-responsive properties. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 11093-11097	13	42
44	Eu doped Si-oxynitride fluorescent nanofibrous inorganic membranes with high flexibility. <i>RSC Advances</i> , 2015 , 5, 101287-101292	3.7	2
43	Controllable construction of titanium dioxide-zirconium dioxide@zinc hydroxyfluoride networks in micro-capillaries for bio-analysis. <i>Journal of Colloid and Interface Science</i> , 2015 , 446, 290-7	9.3	10
42	Investigation on the physical-mechanical properties of dental resin composites reinforced with novel bimodal silica nanostructures. <i>Materials Science and Engineering C</i> , 2015 , 50, 266-73	8.3	49
41	Fabrication of LiMnPO4-MWCNT cathode material via vapor phase hydrolysis and its electrochemical properties. <i>Ionics</i> , 2015 , 21, 651-656	2.7	1

40	Highly strong and elastic graphene fibres prepared from universal graphene oxide precursors. <i>Scientific Reports</i> , 2014 , 4, 4248	4.9	47
39	Self-seeded growth of nest-like hydrated tungsten trioxide film directly on FTO substrate for highly enhanced electrochromic performance. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 11305-11310	13	61
38	Controllable growth of high-quality metal oxide/conducting polymer hierarchical nanoarrays with outstanding electrochromic properties and solar-heat shielding ability. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 13541-13549	13	45
37	Red, green, blue (RGB) electrochromic fibers for the new smart color change fabrics. <i>ACS Applied Materials & ACS Applied & ACS Applie</i>	9.5	73
36	In Situ Functionalization of Stable 3D Nest-Like Networks in Confined Channels for Microfluidic Enrichment and Detection. <i>Advanced Functional Materials</i> , 2014 , 24, 1017-1026	15.6	36
35	Highly conductive, flexible, and compressible all-graphene passive electronic skin for sensing human touch. <i>Advanced Materials</i> , 2014 , 26, 5018-24	24	231
34	Fabrication of large-area and high-crystallinity photoreduced graphene oxide films via reconstructed two-dimensional multilayer structures. <i>NPG Asia Materials</i> , 2014 , 6, e119-e119	10.3	36
33	Hierarchical nanostructure of WO3 nanorods on TiO2 nanofibers and the enhanced visible light photocatalytic activity for degradation of organic pollutants. <i>CrystEngComm</i> , 2013 , 15, 5986	3.3	80
32	Hierarchical NiO microflake films with high coloration efficiency, cyclic stability and low power consumption for applications in a complementary electrochromic device. <i>Nanoscale</i> , 2013 , 5, 4808-15	7.7	81
31	Morphology-tailored synthesis of vertically aligned 1D WO3 nano-structure films for highly enhanced electrochromic performance. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 684-691	13	122
30	Formation of the modified ultrafine anatase TiO2 nanoparticles using the nanofiber as a microsized reactor. <i>CrystEngComm</i> , 2013 , 15, 1607	3.3	8
29	High-performance flexible asymmetric supercapacitors based on 3D porous graphene/MnO2 nanorod and graphene/Ag hybrid thin-film electrodes. <i>Journal of Materials Chemistry C</i> , 2013 , 1, 1245-1	2 3 :1	135
28	A high efficiency microreactor with Pt/ZnO nanorod arrays on the inner wall for photodegradation of phenol. <i>Journal of Hazardous Materials</i> , 2013 , 254-255, 318-324	12.8	52
27	Fabrication of Hollow Tetrapod-Like TiN Nanostructures and Its Electrochemical Property. <i>Journal of the American Ceramic Society</i> , 2012 , 95, 2478-2480	3.8	9
26	Facile growth of vertically aligned BiOCl nanosheet arrays on conductive glass substrate with high photocatalytic properties. <i>Journal of Materials Chemistry</i> , 2012 , 22, 16851		65
25	Low shrinkage light curable dental nanocomposites using SiO microspheres as fillers. <i>Materials Science and Engineering C</i> , 2012 , 32, 2115-2121	8.3	45
24	Bio-applicable and electroactive near-infrared laser-triggered self-healing hydrogels based on graphene networks. <i>Journal of Materials Chemistry</i> , 2012 , 22, 14991		67
23	Self-weaving WO3 nanoflake films with greatly enhanced electrochromic performance. <i>Journal of Materials Chemistry</i> , 2012 , 22, 16633		63

(2008-2012)

22	Preparation of Core/Shell Structured Rutile/Anatase Photocatalyst via Vapor Phase Hydrolysis and its Photocatalytic Degradation of Phenol and Methylene Blue. <i>Journal of the American Ceramic Society</i> , 2012 , 95, 1927-1932	3.8	14	
21	Graphenepolymer hydrogels with stimulus-sensitive volume changes. <i>Carbon</i> , 2012 , 50, 1959-1965	10.4	74	
20	Synthesis of Fe3O4/C/TiO2Magnetic Photocatalyst via Vapor Phase Hydrolysis. <i>International Journal of Photoenergy</i> , 2012 , 2012, 1-8	2.1	34	
19	Silver Orthophosphate Immobilized on Flaky Layered Double Hydroxides as the Visible-Light-Driven Photocatalysts. <i>International Journal of Photoenergy</i> , 2012 , 2012, 1-6	2.1	21	
18	White light emission from Mn-doped ZnSe d-dots synthesized continuously in microfluidic reactors. Journal of Materials Chemistry, 2011 , 21, 17972		31	
17	Solvent-controlled formation and photoelectrochemical sensing properties of 3-dimensional TiO2 nanostructures. <i>CrystEngComm</i> , 2011 , 13, 6258	3.3	15	
16	Molar ratio of In to urea directed formation of In2O3 hierarchical structures: cubes and nanorod-flowers. <i>CrystEngComm</i> , 2011 , 13, 2557	3.3	27	
15	Enhanced Visible Light-Driven Photocatalytic Performance of La-Doped TiO2NFx. <i>Journal of the American Ceramic Society</i> , 2010 , 93, 25-27	3.8	5	
14	Hierarchical Porous, Self-Supporting La- and F-Codoped TiO2 with High Durability for Continuous-Flow Visible Light Photocatalysis. <i>Journal of the American Ceramic Society</i> , 2010 , 93, 1252	3.8	15	
13	Preparation and magnetic property analysis of monodisperse Coll ferrite nanospheres. <i>Journal of Alloys and Compounds</i> , 2010 , 491, 431-435	5.7	72	
12	ZnO nanoparticles immobilized on flaky layered double hydroxides as photocatalysts with enhanced adsorptivity for removal of acid red G. <i>Langmuir</i> , 2010 , 26, 15546-53	4	59	
11	Facile crystallization control of LaF3/LaPO4:Ce, Tb nanocrystals in a microfluidic reactor using microwave irradiation. <i>Journal of Materials Chemistry</i> , 2010 , 20, 1766		26	
10	Synthesis and characterization of La2O3/TiO2-xFx and the visible light photocatalytic oxidation of 4-chlorophenol. <i>Journal of Hazardous Materials</i> , 2010 , 178, 440-9	12.8	33	
9	PeptizationHydrothermal Method as a Surfactant-Free Process toward Nanorod-Like Anatase TiO2 Nanocrystals. <i>European Journal of Inorganic Chemistry</i> , 2009 , 2009, 4078-4084	2.3	19	
8	ZnO/Mg&l layered double hydroxides as strongly adsorptive photocatalysts. <i>Research on Chemical Intermediates</i> , 2009 , 35, 685-692	2.8	12	
7	ZnO nanorods decorated calcined MgAl layered double hydroxides as photocatalysts with a high adsorptive capacity. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2009 , 348, 76-81	5.1	39	
6	Fabrication and magnetic property analysis of monodisperse manganesellinc ferrite nanospheres. <i>Journal of Magnetism and Magnetic Materials</i> , 2009 , 321, 3203-3206	2.8	17	
5	Redispersible and water-soluble LaF3:Ce,Tb nanocrystalsvia a microfluidic reactor with temperature steps. <i>Journal of Materials Chemistry</i> , 2008 , 18, 5060		34	

4	Anatase TiO2 nanoparticles immobilized on ZnO tetrapods as a highly efficient and easily recyclable photocatalyst. <i>Applied Catalysis B: Environmental</i> , 2007 , 76, 168-173	21.8	127
3	Ta3N5 nanoparticles with enhanced photocatalytic efficiency under visible light irradiation. <i>Langmuir</i> , 2004 , 20, 9821-7	4	103
2	High-Performance Ionic Thermoelectric Supercapacitor for Integrated Energy Conversion-Storage. Energy and Environmental Materials,	13	4
1	Synergistic Solvation and Interface Regulations of Eco-Friendly Silk Peptide Additive Enabling Stable Aqueous Zinc-Ion Batteries. <i>Advanced Functional Materials</i> ,2112693	15.6	11