
Xiangyu Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4489773/publications.pdf Version: 2024-02-01

XIANCVIL YANC

#	Article	IF	CITATIONS
1	Impacts of chlorothalonil on denitrification and N2O emission in riparian sediments: Microbial metabolism mechanism. Water Research, 2019, 148, 188-197.	11.3	143
2	Nanoplastics Disturb Nitrogen Removal in Constructed Wetlands: Responses of Microbes and Macrophytes. Environmental Science & Technology, 2020, 54, 14007-14016.	10.0	128
3	Metagenomic analysis of the biotoxicity of titanium dioxide nanoparticles to microbial nitrogen transformation in constructed wetlands. Journal of Hazardous Materials, 2020, 384, 121376.	12.4	85
4	Impact of biochar on greenhouse gas emissions from constructed wetlands under various influent chemical oxygen demand to nitrogen ratios. Bioresource Technology, 2020, 303, 122908.	9.6	84
5	Copper oxide nanoparticles inhibited denitrifying enzymes and electron transport system activities to influence soil denitrification and N2O emission. Chemosphere, 2020, 245, 125394.	8.2	82
6	Comprehensive metagenomic analysis reveals the effects of silver nanoparticles on nitrogen transformation in constructed wetlands. Chemical Engineering Journal, 2019, 358, 1552-1560.	12.7	57
7	Acute and chronic responses of macrophyte and microorganisms in constructed wetlands to cerium dioxide nanoparticles: Implications for wastewater treatment. Chemical Engineering Journal, 2018, 348, 35-45.	12.7	48
8	Aging behavior of microplastics affected DOM in riparian sediments: From the characteristics to bioavailability. Journal of Hazardous Materials, 2022, 431, 128522.	12.4	42
9	Impacts of carbon-based nanomaterials on nutrient removal in constructed wetlands: Microbial community structure, enzyme activities, and metabolism process. Journal of Hazardous Materials, 2021, 401, 123270.	12.4	41
10	Influence of titanium dioxide nanoparticles on functionalities of constructed wetlands for wastewater treatment. Chemical Engineering Journal, 2018, 352, 655-663.	12.7	39
11	Formation, extracellular polymeric substances, and structural stability of aerobic granules enhanced by granular activated carbon. Environmental Science and Pollution Research, 2019, 26, 6123-6132.	5.3	39
12	Enhanced synergistic performance of nano-Fe0-CeO2 composites for the degradation of diclofenac in DBD plasma. Chemical Engineering Journal, 2021, 406, 126884.	12.7	39
13	Biochar based constructed wetland for secondary effluent treatment: Waste resource utilization. Chemical Engineering Journal, 2022, 432, 134377.	12.7	37
14	Micro(nano)plastic size and concentration co-differentiate nitrogen transformation, microbiota dynamics, and assembly patterns in constructed wetlands. Water Research, 2022, 220, 118636.	11.3	37
15	Enhancement of denitrification in biofilters by immobilized biochar under low-temperature stress. Bioresource Technology, 2022, 347, 126664.	9.6	31
16	Impact of microplastics on the treatment performance of constructed wetlands: Based on substrate characteristics and microbial activities. Water Research, 2022, 217, 118430.	11.3	31
17	Formation, extracellular polymeric substances and microbial community of aerobic granules enhanced by microbial flocculant compared with poly-aluminum chloride. Journal of Cleaner Production, 2019, 220, 544-552.	9.3	28
18	Disturbances of electron production, transport and utilization caused by chlorothalonil are responsible for the deterioration of soil denitrification. Soil Biology and Biochemistry, 2019, 134, 100-107.	8.8	21

XIANGYU YANG

#	Article	IF	CITATIONS
19	Nucleic acid C-quadruplex based label-free fluorescence turn-on potassium selective sensing. Analyst, The, 2010, 135, 2074.	3.5	17
20	Marine algae facilitate transfer of microplastics and associated pollutants into food webs. Science of the Total Environment, 2021, 787, 147535.	8.0	13
21	Translocation and biotoxicity of metal (oxide) nanoparticles in the wetland-plant system. Frontiers of Environmental Science and Engineering, 2021, 15, 1.	6.0	12
22	Label-free selective sensing of Pb2+ lead(II) sensors based on the aggregation of a pyrene fluorescent probe. Science Bulletin, 2014, 59, 502-508.	1.7	6