Rodney Chua

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4489334/publications.pdf Version: 2024-02-01

777949 1113639 16 874 13 15 citations h-index g-index papers 16 16 16 1145 docs citations times ranked citing authors all docs

PODNEY CHUA

#	Article	IF	CITATIONS
1	Anode Materials for Rechargeable Aqueous Alâ€lon Batteries: Progress and Prospects. ChemNanoMat, 2022, 8, .	1.5	4
2	Chelating Ligands as Electrolyte Solvent for Rechargeable Zinc-Ion Batteries. Chemistry of Materials, 2021, 33, 1330-1340.	3.2	37
3	Anion Texturing Towards Dendriteâ€Free Zn Anode for Aqueous Rechargeable Batteries. Angewandte Chemie, 2021, 133, 7289-7295.	1.6	59
4	Anion Texturing Towards Dendriteâ€Free Zn Anode for Aqueous Rechargeable Batteries. Angewandte Chemie - International Edition, 2021, 60, 7213-7219.	7.2	209
5	Boosting Zn-Ion Storage Performance of Bronze-Type VO ₂ <i>via</i> Ni-Mediated Electronic Structure Engineering. ACS Applied Materials & Interfaces, 2020, 12, 36110-36118.	4.0	70
6	An Insight into the Electrochemical Activity of Al-doped V ₂ O ₃ . Journal of the Electrochemical Society, 2020, 167, 100514.	1.3	13
7	Bronze-type vanadium dioxide holey nanobelts as high performing cathode material for aqueous aluminium-ion batteries. Journal of Materials Chemistry A, 2020, 8, 12716-12722.	5.2	50
8	Codoped Holey Graphene Aerogel by Selective Etching for Highâ€Performance Sodiumâ€lon Storage. Advanced Energy Materials, 2020, 10, 2000099.	10.2	56
9	Multiscalar Investigation of FeVO ₄ Conversion Cathode for a Low Concentration Zn(CF ₃ SO ₃) ₂ Rechargeable Zn″on Aqueous Battery. Batteries and Supercaps, 2020, 3, 619-630.	2.4	18
10	Hydrogen-Bonding Interactions in Hybrid Aqueous/Nonaqueous Electrolytes Enable Low-Cost and Long-Lifespan Sodium-Ion Storage. ACS Applied Materials & Interfaces, 2020, 12, 22862-22872.	4.0	32
11	MLi ₂ Ti ₆ O ₁₄ (M = 2Na, Sr, Ba, Pb) Titanate Anodes for Lithium-Ion Capacitors (LICs). ECS Meeting Abstracts, 2020, MA2020-02, 641-641.	0.0	0
12	Layered VOPO ₄ as a Cathode Material for Rechargeable Zinc-Ion Battery: Effect of Polypyrrole Intercalation in the Host and Water Concentration in the Electrolyte. ACS Applied Energy Materials, 2019, 2, 8667-8674.	2.5	90
13	Amorphous Fe–Ni–P–B–O Nanocages as Efficient Electrocatalysts for Oxygen Evolution Reaction. ACS Nano, 2019, 13, 12969-12979.	7.3	151
14	1.3†V superwide potential window sponsored by Na-Mn-O plates as cathodes towards aqueous rechargeable sodium-ion batteries. Chemical Engineering Journal, 2019, 370, 742-748.	6.6	32
15	Citric Acid Assisted Solid State Synthesis of V ₂ O ₃ , V ₂ O ₃ /C and V ₂ O ₃ /Graphene Composites for Liâ€ion Battery Anode Applications. ChemElectroChem, 2019, 6, 493-503.	1.7	27
16	Amorphous Vanadium Oxide Thin Films as Stable Performing Cathodes of Lithium and Sodium-Ion Batteries. Nanoscale Research Letters, 2018, 13, 363.	3.1	26