
Ana M Herrero

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4488203/publications.pdf

Version: 2024-02-01

ANA M HEDDEDO

#	Article	IF	CITATIONS
1	Inulin gelled emulsion as a fat replacer and fiber carrier in healthier Bologna sausage. Food Science and Technology International, 2022, 28, 3-14.	1.1	13
2	Emulsion gels as delivery systems for phenolic compounds: Nutritional, technological and structural properties. Food Chemistry, 2021, 339, 128049.	4.2	25
3	Phenolic compounds in emulsion gel-based delivery systems applied as animal fat replacers in frankfurters: Physico-chemical, structural and microbiological approach. Food Chemistry, 2021, 340, 128095.	4.2	38
4	Dry-fermented sausages inoculated with Enterococcus faecium CECT 410 as free cells or in alginate beads. LWT - Food Science and Technology, 2021, 139, 110561.	2.5	10
5	Seed wastes and byproducts: reformulation of meat products. , 2021, , 347-369.		Ο
6	Characterisation of Muffins with Upcycled Sunflower Flour. Foods, 2021, 10, 426.	1.9	12
7	Sensory Analysis and Consumer Research in New Meat Products Development. Foods, 2021, 10, 429.	1.9	58
8	Development of Meat Products with Healthier Lipid Content: Vibrational Spectroscopy. Foods, 2021, 10, 341.	1.9	14
9	Sensory Analysis and Consumer Research in New Product Development. Foods, 2021, 10, 582.	1.9	17
10	Structural and Technological Approach to Reveal the Role of the Lipid Phase in the Formation of Soy Emulsion Gels with Chia Oil. Gels, 2021, 7, 48.	2.1	3
11	Novel lipid materials based on gelling procedures as fat analogues in the development of healthier meat products. Current Opinion in Food Science, 2021, 39, 1-6.	4.1	31
12	Novel Strategies for the Development of Healthier Meat and Meat Products and Determination of Their Quality Characteristics. Foods, 2021, 10, 2578.	1.9	5
13	Physical hazards in meat products: Consumers' complaints found on a Brazilian website. Food Control, 2020, 108, 106892.	2.8	8
14	Impact of Culinary Procedures on Nutritional and Technological Properties of Reduced-Fat Longanizas Formulated with Chia (Salvia hispanica L.) or Oat (Avena sativa L.) Emulsion Gel. Foods, 2020, 9, 1847.	1.9	9
15	Effect of encapsulated <i>Lactobacillus plantarum</i> as probiotic on dryâ€sausages during chilled storage. International Journal of Food Science and Technology, 2020, 55, 3613-3621.	1.3	19
16	Understanding the role of chia (Salvia Hispanica L.) mucilage on olive oil-based emulsion gels as a new fat substitute in emulsified meat products. European Food Research and Technology, 2020, 246, 909-922.	1.6	34
17	Chia (Salvia hispanica L.) mucilage as a new fat substitute in emulsified meat products: Technological, physicochemical, and rheological characterization. LWT - Food Science and Technology, 2020, 125, 109193.	2.5	54
18	Potential of a Sunflower Seed By-Product as Animal Fat Replacer in Healthier Frankfurters. Foods, 2020, 9, 445.	1.9	29

ANA M HERRERO

#	Article	IF	CITATIONS
19	Modeling the influence of functional additives in beef sausages using a Box-Benkhen design: Effects on quality characteristics. Food Bioscience, 2020, 35, 100572.	2.0	4
20	Effect of different strategies of <i>Lactobacillus plantarum</i> incorporation in chorizo sausages. Journal of the Science of Food and Agriculture, 2019, 99, 6706-6712.	1.7	22
21	Effects of two fibers used separately and in combination on physico-chemical, textural, nutritional and sensory properties of beef fresh sausage. British Food Journal, 2019, 121, 1428-1440.	1.6	4
22	Chia (Salvia hispanica L.) a Promising Alternative for Conventional and Gelled Emulsions: Technological and Lipid Structural Characteristics. Gels, 2019, 5, 19.	2.1	15
23	Phenolic Metabolites in Plasma and Thigh Meat of Chickens Supplemented with Grape Byproducts. Journal of Agricultural and Food Chemistry, 2019, 67, 4463-4471.	2.4	22
24	Impact of Biogenic Amines on Food Quality and Safety. Foods, 2019, 8, 62.	1.9	332
25	Survival of probiotic <i>Lactobacillus plantarum</i> and <i>Enterococcus faecium</i> in alginate beads during stress treatments. Nutrition and Food Science, 2019, 49, 273-283.	0.4	5
26	Characterization of ethyl cellulose and beeswax oleogels and their suitability as fat replacers in healthier lipid pâtés development. Food Hydrocolloids, 2019, 87, 960-969.	5.6	146
27	Improving Lipid Content in Muscle-Based Food: New Strategies for Developing Fat Replacers Based on Gelling Processes Using Healthy Edible Oils. , 2019, , 185-198.		2
28	Effects of probiotic strains, Lactobacillus plantarum TN8 and Pediococcus acidilactici, on microbiological and physico-chemical characteristics of beef sausages. LWT - Food Science and Technology, 2018, 92, 195-203.	2.5	28
29	Implications of domestic food practices for the presence of bioactive components in meats with special reference to meat-based functional foods. Critical Reviews in Food Science and Nutrition, 2018, 58, 2334-2345.	5.4	16
30	Elucidation of lipid structural characteristics of chia oil emulsion gels by Raman spectroscopy and their relationship with technological properties. Food Hydrocolloids, 2018, 77, 212-219.	5.6	30
31	Effect of polyphenols dietary grape by-products on chicken patties. European Food Research and Technology, 2018, 244, 367-377.	1.6	23
32	Quality Assessment of Fresh Meat from Several Species Based on Free Amino Acid and Biogenic Amine Contents during Chilled Storage. Foods, 2018, 7, 132.	1.9	94
33	Infrared spectroscopy used to determine effects of chia and olive oil incorporation strategies on lipid structure of reduced-fat frankfurters. Food Chemistry, 2017, 221, 1333-1339.	4.2	41
34	Vibrational Spectroscopy for Quality Assessment of Meat. , 2017, , 247-276.		1
35	Effect of Added Grape Seed and Skin on Chicken Thigh Patties during Chilled Storage. International Journal of Food and Nutritional Science, 2017, 4, 67-73.	0.4	8
36	Emulsion gels as potential fat replacers delivering β-glucan and healthy lipid content for food applications. Journal of Food Science and Technology, 2016, 53, 4336-4347.	1.4	38

ANA M HERRERO

#	Article	IF	CITATIONS
37	Effects of emulsion gels containing bioactive compounds on sensorial, technological, and structural properties of frankfurters. Food Science and Technology International, 2016, 22, 132-145.	1.1	68
38	Essay of Different Extraction Procedures in Capelin Fish Meal for Biogenic Amine Determination by HPLC. Journal of Aquatic Food Product Technology, 2015, 24, 443-453.	0.6	4
39	Oil-in-water emulsion gels stabilized with chia (Salvia hispanica L.) and cold gelling agents: Technological and infrared spectroscopic characterization. Food Chemistry, 2015, 185, 470-478.	4.2	96
40	Novel applications of oil-structuring methods as a strategy to improve the fat content of meat products. Trends in Food Science and Technology, 2015, 44, 177-188.	7.8	152
41	Application of probiotic delivery systems in meat products. Trends in Food Science and Technology, 2015, 46, 120-131.	7.8	51
42	Rheological behaviour of commercial cooked meat products evaluated by tensile test and texture profile analysis (TPA). Meat Science, 2014, 98, 310-315.	2.7	58
43	Raman Spectroscopic Study of Structural Changes upon Chilling Storage of Frankfurters Containing Olive Oil Bulking Agents As Fat Replacers. Journal of Agricultural and Food Chemistry, 2014, 62, 5963-5971.	2.4	24
44	Polysaccharide gels as oil bulking agents: Technological and structural properties. Food Hydrocolloids, 2014, 36, 374-381.	5.6	46
45	Preparation and impact of multiple (water-in-oil-in-water) emulsions in meat systems. Food Chemistry, 2013, 141, 338-346.	4.2	109
46	Chilled storage characteristics of low-fat, n-3 PUFA-enriched dry fermented sausage reformulated with a healthy oil combination stabilized in a konjac matrix. Food Control, 2013, 31, 158-165.	2.8	46
47	Effect of preformed konjac gels, with and without olive oil, on the technological attributes and storage stability of merguez sausage. Meat Science, 2013, 93, 351-360.	2.7	50
48	Oil bulking agents based on polysaccharide gels in meat batters: A Raman spectroscopic study. Food Chemistry, 2013, 141, 3688-3694.	4.2	31
49	Storage stability of low-fat sodium reduced fresh merguez sausage prepared with olive oil in konjac gel matrix. Meat Science, 2013, 94, 438-446.	2.7	17
50	Healthy oil combination stabilized in a konjac matrix as pork fat replacement in low-fat, PUFA-enriched, dry fermented sausages. LWT - Food Science and Technology, 2013, 51, 158-163.	2.5	70
51	Konjac gel for use as potential fat analogue for healthier meat product development: Effect of chilled and frozen storage. Food Hydrocolloids, 2013, 30, 351-357.	5.6	70
52	Biogenic Amines in Low- and Reduced-Fat Dry Fermented Sausages Formulated with Konjac Gel. Journal of Agricultural and Food Chemistry, 2012, 60, 9242-9248.	2.4	7
53	Konjac gel as pork backfat replacer in dry fermented sausages: Processing and quality characteristics. Meat Science, 2012, 92, 144-150.	2.7	94
54	Lipid and protein structure analysis of frankfurters formulated with olive oil-in-water emulsion as animal fat replacer. Food Chemistry, 2012, 135, 133-139.	4.2	33

ANA M HERRERO

#	Article	IF	CITATIONS
55	Optimisation of a chromatographic procedure for determining biogenic amine concentrations in meat and meat products employing a cation-exchange column with a post-column system. Food Chemistry, 2012, 130, 1066-1073.	4.2	43
56	Konjac gel fat analogue for use in meat products: Comparison with pork fats. Food Hydrocolloids, 2012, 26, 63-72.	5.6	113
57	Infrared Study of Structural Characteristics of Frankfurters Formulated with Olive Oil-in-Water Emulsions Stabilized with Casein As Pork Backfat Replacer. Journal of Agricultural and Food Chemistry, 2011, 59, 12998-13003.	2.4	17
58	Infrared spectroscopic analysis of structural features and interactions in olive oil-in-water emulsions stabilized with soy protein. Food Research International, 2011, 44, 360-366.	2.9	49
59	Olive oil-in-water emulsions stabilized with caseinate: Elucidation of protein–lipid interactions by infrared spectroscopy. Food Hydrocolloids, 2011, 25, 12-18.	5.6	72
60	Microbial transglutaminase for cold-set binding of unsalted/salted pork models and restructured dry ham. Meat Science, 2010, 84, 747-754.	2.7	24
61	Influence of emulsified olive oil stabilizing system used for pork backfat replacement in frankfurters. Food Research International, 2010, 43, 2068-2076.	2.9	141
62	Elucidation of structural changes in soy protein isolate upon heating by Raman spectroscopy. International Journal of Food Science and Technology, 2009, 44, 711-717.	1.3	37
63	Plasma powder as cold-set binding agent for meat system: Rheological and Raman spectroscopy study. Food Chemistry, 2009, 113, 493-499.	4.2	30
64	Raman spectroscopic study of electron-beam irradiated cold-smoked salmon. Food Research International, 2009, 42, 216-220.	2.9	21
65	Magnetic resonance imaging study of the cold-set gelation of meat systems containing plasma powder. Food Research International, 2009, 42, 1362-1372.	2.9	9
66	Raman spectroscopy a promising technique for quality assessment of meat and fish: A review. Food Chemistry, 2008, 107, 1642-1651.	4.2	311
67	Raman spectroscopy study of the structural effect of microbial transglutaminase on meat systems and its relationship with textural characteristics. Food Chemistry, 2008, 109, 25-32.	4.2	121
68	Tensile properties of cooked meat sausages and their correlation with texture profile analysis (TPA) parameters and physico-chemical characteristics. Meat Science, 2008, 80, 690-696.	2.7	84
69	Raman spectroscopic determination of structural changes in meat batters upon soy protein addition and heat treatment. Food Research International, 2008, 41, 765-772.	2.9	90
70	Raman Spectroscopic Evaluation of Meat Batter Structural Changes Induced by Thermal Treatment and Salt Addition. Journal of Agricultural and Food Chemistry, 2008, 56, 7119-7124.	2.4	52
71	Raman Spectroscopy for Monitoring Protein Structure in Muscle Food Systems. Critical Reviews in Food Science and Nutrition, 2008, 48, 512-523.	5.4	260
72	Breaking strength of dry fermented sausages and their correlation with texture profile analysis (TPA) and physico-chemical characteristics. Meat Science, 2007, 77, 331-338.	2.7	108

#	Article	IF	CITATIONS
73	Magnetic Resonance Imaging, Rheological Properties, and Physicochemical Characteristics of Meat Systems with Fibrinogen and Thrombin. Journal of Agricultural and Food Chemistry, 2007, 55, 9357-9364.	2.4	24
74	The effect of supplementing goats milk with whey protein concentrate on textural properties of set-type yoghurt. International Journal of Food Science and Technology, 2006, 41, 87-92.	1.3	42
75	Prediction of frozen storage time of Cape hake (Merluccius capensis andMerluccius paradoxus) by instrumental methods. Journal of the Science of Food and Agriculture, 2006, 86, 2128-2133.	1.7	8
76	A model to predict fish quality from instrumental features. Sensors and Actuators B: Chemical, 2005, 111-112, 293-298.	4.0	47
77	Ultrastructural Changes and Structure and Mobility of Myowater in Frozen-Stored Hake (Merluccius) Tj ETQq1 1 C Chemistry, 2005, 53, 2558-2566.	0.784314 2.4	rgBT /Overlo 71
78	Stress-relaxation test to evaluate textural quality of frozen stored Cape hake (M. capensis and M.) Tj ETQq0 0 0 rg	gBT /Overl 2.9	ock 10 Tf 50
79	Stress Relaxation Test for Monitoring Post Mortem Textural Changes of Ice-stored Cod <i>(Gadus) Tj ETQq1 1 0.7</i>	784314 rgi 1.5	3T /Overlock
80	Determination of l-lactic acid in yoghurt by a bienzyme amperometric graphite?Teflon composite biosensor. European Food Research and Technology, 2004, 219, 557-560.	1.6	24
81	Raman Spectroscopic Study of Structural Changes in Hake (Merluccius merlucciusL.) Muscle Proteins during Frozen Storage. Journal of Agricultural and Food Chemistry, 2004, 52, 2147-2153.	2.4	70
82	Development of a Quality Index Method for Frozen Hake (M. capensis and M. paradoxus). Journal of Food Science, 2003, 68, 1086-1092.	1.5	25
83	Structural Properties of Aggregates from Frozen Stored Hake Muscle Proteins. Journal of Food Science, 2002, 67, 2827-2832.	1.5	19
84	Raman Analysis of White Spots Appearing in the Shell of Argentine Red Shrimp (Pleoticus muelleri) during Frozen Storage. Journal of Food Science, 2002, 67, 2892-2895.	1.5	7
85	Structural Changes of Hake (Merluccius merlucciusL.) Fillets:Â Effects of Freezing and Frozen Storage. Journal of Agricultural and Food Chemistry, 1999, 47, 952-959.	2.4	98