Zhen-Yan Deng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4487383/publications.pdf Version: 2024-02-01

ZHEN-YAN DENC

#	Article	lF	CITATIONS
1	Defluoridation performance comparison of aluminum hydroxides with different crystalline phases. Water Science and Technology: Water Supply, 2022, 22, 3673-3684.	2.1	3
2	Effect of Al surface oxide structures on oxidability of Al-peroxymonosulfate system. Chemical Engineering Journal, 2022, 440, 135923.	12.7	2
3	Soaked Al powder for efficient reduction of hexavalent chromium in neutral solution. Journal of Cleaner Production, 2022, 365, 132901.	9.3	2
4	Oxide modified aluminum for removal of methyl orange and methyl blue in aqueous solution. RSC Advances, 2021, 11, 867-875.	3.6	10
5	Filtrates with Hydroxyl Radicals Prepared using Al + Acid + H ₂ O ₂ for Removing Organic Pollutants. ACS Omega, 2021, 6, 14182-14190.	3.5	5
6	Separation of Excess Fluoride from Water Using Amorphous and Crystalline AlOOH Adsorbents. ACS Omega, 2021, 6, 16488-16497.	3.5	16
7	A comparative study on high-efficient reduction of bromate in neutral solution using zero-valent Al treated by different procedures. Science of the Total Environment, 2021, 795, 148786.	8.0	8
8	A comprehensive review of adsorbents for fluoride removal from water: performance, water quality assessment and mechanism. Environmental Science: Water Research and Technology, 2021, 7, 1362-1386.	2.4	33
9	Hydrogen generation from Alâ€water reaction catalyzed by Fe/AlOOH composite. Energy Science and Engineering, 2020, 8, 2402-2411.	4.0	9
10	High activity AlOOH catalyzed Al hydrolysis for hydrogen generation. Sustainable Energy Technologies and Assessments, 2020, 38, 100676.	2.7	12
11	Effect of crystalline phases of aluminum hydroxide catalysts on Alâ€water reaction. International Journal of Energy Research, 2020, 44, 4969-4976.	4.5	14
12	Relative order of acidity among hydroxyl groups of oxyluciferin and emission light colors in aqueous solution. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 397, 112504.	3.9	4
13	Surface modified zero-valent aluminum for Cr(VI) removal at neutral pH. Chemical Engineering Journal, 2020, 395, 125140.	12.7	24
14	Hydrogen generation from Al-Water reaction promoted by M-B/γ-Al2O3 (MÂ=ÂCo, Ni) catalyst. International Journal of Hydrogen Energy, 2019, 44, 24377-24386.	7.1	15
15	Enhanced adsorption and catalytic degradation of organic dyes by nanometer iron oxide anchored to single-wall carbon nanotubes. Applied Surface Science, 2019, 488, 813-826.	6.1	58
16	Arsenic removal from water by nanometer iron oxide coated single-wall carbon nanotubes. Journal of Molecular Liquids, 2018, 259, 369-375.	4.9	50
17	Arsenic removal from water by metal-organic framework MIL-88A microrods. Environmental Science and Pollution Research, 2018, 25, 27196-27202.	5.3	61
18	Effect of storage environment on hydrogen generation by the reaction of Al with water. RSC Advances, 2017, 7, 2103-2109.	3.6	26

Zhen-Yan Deng

#	Article	IF	CITATIONS
19	Electrostatic Catalysis Induced by Luciferases in the Decomposition of the Firefly Dioxetanone and Its Analogue. Journal of Physical Chemistry B, 2017, 121, 11053-11061.	2.6	13
20	Kinetics study of the Al–water reaction promoted by an ultrasonically prepared Al(OH) ₃ suspension. RSC Advances, 2016, 6, 35305-35314.	3.6	16
21	How Does the Local Electrostatic Field Influence Emitted Wavelengths and Bioluminescent Intensities of Modified Heteroaromatic Luciferins?. Journal of Physical Chemistry B, 2015, 119, 10399-10405.	2.6	9
22	Fluoride removal from water using high-activity aluminum hydroxide prepared by the ultrasonic method. RSC Advances, 2015, 5, 84223-84231.	3.6	33
23	Clarification of activation mechanism in oxide-modified aluminum. International Journal of Hydrogen Energy, 2015, 40, 12057-12062.	7.1	17
24	Hydrogen generation by the reaction of Al with water using oxides as catalysts. International Journal of Energy Research, 2014, 38, 918-925.	4.5	40
25	<scp><scp>Al</scp></scp> Surface Modification by a Facile Route. Journal of the American Ceramic Society, 2014, 97, 44-47.	3.8	12
26	Effect of initial gas pressure on the reaction of Al with water. International Journal of Hydrogen Energy, 2014, 39, 13491-13497.	7.1	25
27	Effect of trace species in water on the reaction of Al with water. Journal of Power Sources, 2014, 245, 721-729.	7.8	41
28	Hydrogen generation by the reaction of Al with water promoted by an ultrasonically prepared Al(OH) 3 suspension. International Journal of Hydrogen Energy, 2014, 39, 18734-18742.	7.1	55
29	Reaction of Al powder with water for hydrogen generation under ambient condition. International Journal of Hydrogen Energy, 2012, 37, 13132-13140.	7.1	115
30	Enhancing Hydrogenâ€Generation Performance of γâ€ <scp><scp>Al</scp></scp> ₂ <scp><scp>O</scp> </scp> ₃ Modified <scp> <scp>Al</scp> </scp> Powder by Ultrasonic Dispersion. Journal of the American Ceramic Society, 2012, 95, 1193-1196	3.8	10
31	Effect of different modification agents on hydrogen-generation by the reaction of Al with water. International Journal of Hydrogen Energy, 2010, 35, 9561-9568.	7.1	128
32	Role of Modification Agent Coverage in Hydrogen Generation by the Reaction of Al with Water. Journal of the American Ceramic Society, 2010, 93, 2534-2536.	3.8	13
33	Role of Particle Sizes in Hydrogen Generation by the Reaction of Al with Water. Journal of the American Ceramic Society, 2010, 93, 2998-3001.	3.8	25
34	Hydrogenâ€Generation Materials for Portable Applications. Journal of the American Ceramic Society, 2008, 91, 3825-3834.	3.8	132
35	Physicochemical Mechanism for the Continuous Reaction of ?-Al2O3-Modified Aluminum Powder with Water. Journal of the American Ceramic Society, 2007, 90, 1521-1526.	3.8	147
36	Nano-TiO2-Coated Unidirectional Porous Glass Structure Prepared by Freeze Drying and Solution Infiltration. Journal of the American Ceramic Society, 2007, 90, 1265-1268.	3.8	26

ZHEN-YAN DENG

#	Article	IF	CITATIONS
37	Long Crack R-Curve of Aligned Porous Silicon Nitride. Journal of the American Ceramic Society, 2005, 88, 462-465.	3.8	7
38	Modification of Al Particle Surfaces by gamma-Al2O3 and Its Effect on the Corrosion Behavior of Al. Journal of the American Ceramic Society, 2005, 88, 977-979.	3.8	78
39	Temperature Effect on Hydrogen Generation by the Reaction of gamma-Al2O3-Modified Al Powder with Distilled Water. Journal of the American Ceramic Society, 2005, 88, 2975-2977.	3.8	39
40	Porous Al2O3/Al catalyst supports fabricated by an Al(OH)3/Al mixture and the effect of agglomerates. Journal of Materials Research, 2005, 20, 672-679.	2.6	4
41	Effects of Zirconium Doping on Grainâ€Boundary Bonding in Aluminaâ€ S ilicon Carbide Composites. Journal of the American Ceramic Society, 2004, 87, 493-495.	3.8	1
42	High‣urfaceâ€Area Alumina Ceramics Fabricated by the Decomposition of Al(OH) ₃ . Journal of the American Ceramic Society, 2001, 84, 485-491.	3.8	115
43	Microstructure and Mechanical Properties of Porous Alumina Ceramics Fabricated by the Decomposition of Aluminum Hydroxide. Journal of the American Ceramic Society, 2001, 84, 2638-2644.	3.8	160
44	Subband structures and exciton and impurity states in V-shapedGaAsâ^'Ga1â^'xAlxAsquantum wires. Physical Review B, 2000, 61, 15905-15913.	3.2	21